Skip to main content
Filter faculty by: and
Search the faculty research descriptions using keywords or phrases:   

Our research focuses on both fundamental and applied study of soft materials and nanomaterials, develop fabrication approaches to enable hybrid integration of multi-materials towards high-performance electronic and photonic systems, innovate new technology that can intelligently immerse electronics and photonics into biological systems, and create new tools and devices to address unmet clinical needs and improve human healthcare. Our lab fosters a collaborative environment that converges expertise/interests from various backgrounds including materials science and engineering, electrical engineering, physics, chemical engineering, mechanical engineering, and biomedical engineering. We provide hands-on learning, enjoy making practical tools, and aspire to transform scientific advancements into societal solutions.

Our lab is interested in the mechanisms of membrane trafficking in eukaryotic cells. Using a combination of biochemistry, in vitro reconstitution, and structural biology, we seek to understand how protein complexes assemble to bend and perturb membranes during vesicle budding (endocytosis) and vesicle fusion (exocytosis). Our group also specializes in cryo-electron microscopy (cryo-EM) and we use semi-native substrates (nanodiscs, liposomes) to visualize complexes engaged with the membrane.

Our lab is interested in the molecular mechanisms of adaptive stress responses. These responses to environmental or metabolic stress are essential for survival but frequently dysregulated in disease. We use an integrated approach combining biophysical, structural, and biochemical methods to investigate the roles of intrinsically disordered proteins and dynamic enzymes that orchestrate these critical stress responses, with the ultimate goal of developing new approaches for modulating the functions of dynamic molecules.

Our objective is to understand the dynamic and structural properties of chromosomes during mitosis. We use live cell imaging techniques to address how kinetochores are assembled, capture microtubules and promote faithful segregation of chromosomes.

Our long-term goal is to define the molecular mechanisms of two-component regulatory systems, which are utilized for signal transduction by bacteria, archaea, eukaryotic microorganisms, and plants. Our current focus is to identify and understand the features that control the rates of several different types of protein phosphorylation and dephosphorylation reactions. The kinetics of phosphotransfer reactions can vary dramatically between different pathways and reflect the need to synchronize biological responses (e.g. behavior, development, physiology, virulence) to environmental stimuli. Member of the Molecular & Cellular Biophysics Training Program.

How do networks of cells synchronize behaviors across differing spatial and temporal scales? This fundamental aspect of cellular dynamics is broadly relevant to understanding many biological systems in which the coherence of electrical or chemical signals is required for multicellular patterning or organ function. Our group’s primary research interests are related to understanding the cellular and microenvironmental conditions that are required to support the biorhythmic behavior of the system of cells that natively control heart rate, cardiac pacemaker cells. We utilize a variety of techniques including computational modeling, next generation sequencing, in vivo genetic manipulation, super-resolution imaging, and direct physiological recording to investigate the developmental processes that assemble the hearts pacemaking complex. The ultimate goals of these studies is to determine how the pacemaker cell lineage is patterned in the embryo, build strategies towards fabricating this cell type for therapeutic purposes, and identify vulnerabilities that may lead to pacemaker cell pathologies in humans.

Our research group uses several biochemical and structural techniques (e.g. enzyme assays, X-ray crystallography, and cryo-EM) to understand how molecular machines drive the cell cycle. Dysregulation of these enzymes results in numerous cancer types.

A growing body of work in the biomedical sciences generates and analyzes omics data; our lab’s work contributes to these efforts by focusing on the integration of different omics data types to bring mechanistic insights to the multi-scale nature of cellular processes. The focus of our research is on developing systems genomics approaches to study the impact of genomic variation on genome function. We have used this focus to study genetic and molecular variation in both natural and engineered cellular systems and approach these topics through the lens of computational biology, machine learning and advanced omics data integration. More specifically, we create methods to reveal functional relationships across genomics, transcriptomics, ribosome profiling, proteomics, structural genomics, metabolomics and phenotype variability data. Our integrative omics methods improve understanding of how cells achieve regulation at multiple scales of complexity and link to genetic and molecular variants that influence these processes. Ultimately, the goal of our research is advancing the analysis of high-throughput omics technologies to empower patient care and clinical trial selections. To this end, we are developing integrative methods to improve mutation panels by selecting more informative genetic and molecular biomarkers that match disease relevance.

The Button lab in the Department of Biochemistry and Biophysics is part of the Marsico Lung Institute. Our lab is actively involved in projects that are designed to define the pathogenesis of muco-obstructive pulmonary disorders and to identify therapies that could be used to improve the quality of life in persons afflicted by these diseases. In particular, our research works to understand the biochemical and biophysical properties of mucin biopolymers, which give airway mucus its characteristic gel-like properties, and how they are altered in diseases such as Asthma, COPD, and cystic fibrosis.

Current research projects in the Campbell laboratory include structural, biophysical and biochemical studies of wild type and variant Ras and Rho family GTPase proteins, as well as the identification, characterization and structural elucidation of factors that act on these GTPases. Ras and Rho proteins are members of a large superfamily of related guanine nucleotide binding proteins. They are key regulators of signal transduction pathways that control cell growth. Rho GTPases regulate signaling pathways that also modulate cell morphology and actin cytoskeletal organization. Mutated Ras proteins are found in 30% of human cancers and promote uncontrolled cell growth, invasion, and metastasis. Another focus of the lab is in biochemical and biophysical characterization of the cell adhesion proteins, focal adhesion kinase, vinculin, paxillin and palladin. These proteins are involved in actin cytoskeletal rearrangements and cell motility, amongst other functions. Most of our studies are conducted in collaboration with laboratories that focus on molecular and cellular biological aspects of these problems. This allows us to direct cell-based signaling, motility and transformation analyses. Member of the Molecular & Cellular Biophysics Training Program.

Molecular evolution and mechanistic enzymology find powerful synergy in our study of aminoacyl-tRNA synthetases, which translate the genetic code. Class I Tryptophanyl-tRNA Synthetase stores free energy as conformational strain imposed by long-range, interactions on the minimal catalytic domain (MCD) when it binds ATP. We study how this allostery works using X-ray crystallography, bioinformatics, molecular dynamics, enzyme kinetics, and thermodynamics. As coding sequences for class I and II MCDs have significant complementarity, we also pursuing their sense/antisense ancestry. Member of the Molecular & Cellular Biophysics Training Program.

Our goal is to understand the fundamental cell biology underlying processes such as neurodevelopment, angiogenesis, and the metastasis of cancer cells. Most of our experiments focus on molecular motors such as myosin-X and on the finger-like structures known as filopodia. We generally utilize advanced imaging techniques such as TIRF and single-molecule imaging in conjunction with mammalian cell culture. We also use molecular biology and biochemistry and are in the process of developing a mouse model to investigate the functions of myosin-X and filopodia. We are looking for experimentally driven students who have strong interests in understanding the molecular basis of dynamic cellular processes such as filopodial extension, mechanosensing, and cell migration.

The Elston lab is interested in understanding the dynamics of complex biological systems, and developing reliable mathematical models that capture the essential components of these systems. The projects in the lab encompass a wide variety of biological phenomena including signaling through MAPK pathways, noise in gene regulatory networks, airway surface volume regulation, and understanding energy transduction in motor proteins. A major focus of our research is understanding the role of molecular level noise in cellular and molecular processes. We have developed the software tool BioNetS to accurately and efficiently simulate stochastic models of biochemical networks

The research in my lab is divided into two main areas – 1) Atomic force microscopy and fluorescence studies of protein-protein and protein-nucleic acid interactions, and 2) Mechanistic studies of transcription elongation. My research spans the biochemical, biophysical, and analytical regimes.

My lab focuses on developing bioinspired molecular constructs and material platforms that can mimic proteins and be programmed to respond to stimuli resulting from biomolecular recognition. Major efforts are directed to design peptide- and nucleic acid-based scaffolds or injectable nanostructures to create artificial extracellular matrices that can directly signal cells.

We study large multinucleate cells such as fungi, muscle and placenta to understand how cells are organized in time and space.  Using quantitative live cell microscopy, biochemical reconstitution and computational approaches we examine how the physical properties of molecules generate spatial patterning of cytosol and scaling of cytoskeleton scaffolds in the cell cycle.

We address fundamental issues in cell and developmental biology, issues such as how cells move to specific positions, how the orientations of cell divisions are determined, how the mitotic spindle is positioned in cells, and how cells respond to cell signaling – for example Wnt signaling, which is important in development and in cancer biology. We are committed to applying whatever methods are required to answer important questions. As a result, we use diverse methods, including methods of cell biology, developmental biology, forward and reverse genetics including RNAi, biochemistry, biophysics, mathematical and computational modeling and simulations, molecular biology, and live microscopy of cells and of the dynamic components of the cytoskeleton – microfilaments, microtubules, and motor proteins. Most experiments in the lab use C. elegans embryos, and we have also used Drosophila and Xenopus recently. C. elegans is valuable as a model system because of the possibility of combining the diverse techniques above to answer a wide array of interesting questions. We also have a project underway to develop a new model system for studying how cellular and developmental mechanisms evolve, using little-studied organisms called water bears. Rotating graduate students learn to master existing techniques, and students who join the lab typically grow their rotation projects into larger, long term projects, and/or develop creative, new projects.

We are interested in basic DNA-protein interactions as related to – DNA replication, DNA repair and telomere function.  We utilize a combination of state of the art molecular and biochemical methods together with high resolution electron microscopes.

Dynamic control of signaling networks in living cells; Rho family and MAPK networks in motility and network plasticity; new tools to study protein activity in living cells (i.e., biosensors, protein photomanipulation, microscopy). Member of the Molecular & Cellular Biophysics Training Program and the Medicinal Chemistry Program.

The Jarstfer lab uses an interdisciplinary approach to solve biological problems that are germane to human health.   Currently we are investigating the structure of the enzyme telomerase, we are developing small-molecules that target the telomere for drug discovery and chemical biology purposes, and we are investigating the signals that communicate the telomere state to the cell in order to control cellular immortality. We are also engaged in a drug/chemical tool discovery project to identify small molecules that control complex social behavior in mammals.  Techniques include standard molecular biology and biochemistry of DNA, RNA, and proteins, occasional organic synthesis, and high throughput screening.

Emotional behavior is regulated by a host of chemicals, including neurotransmitters and neuromodulators, acting on specific circuits within the brain. There is strong evidence for the existence of both endogenous stress and anti-stress systems. Chronic exposure to drugs of abuse and stress are hypothesized to modulate the relative balance of activity of these systems within key circuitry in the brain leading to dysregulated emotional behavior. One of the primary focuses of the Kash lab is to understand how chronic drugs of abuse and stress alter neuronal function, focusing on these stress and anti-stress systems in brain circuitry important for anxiety-like behavior. In particular, we are interested in defining alterations in synaptic function, modulation and plasticity using a combination of whole-cell patch-clamp physiology, biochemistry and mouse models.  Current projects are focused on the role of a unique population of dopamine neurons in alcoholism and anxiety.

Kratochvil, Huong
Website | Email

We take inspiration from Nature to build new proteins that guide our understanding of how natural proteins function: we can distill complex natural proteins into simple model proteins where we have exact control over the physicochemical properties of the entire system. Our group combines protein design strategies with biochemistry, biophysics, and structural biology to 1) test mechanistic hypotheses of membrane protein structure and function, and 2) define novel protein-protein interactions in immunology for engineering protein-based therapeutics.

We focus on a variety of design goals including the creation of novel protein-protein interactions, protein structures, vaccine antigens and light activatable protein switches. Central to all of our projects is the Rosetta program for protein modeling. In collaboration with developers from a variety of universities, we are continually adding new features to Rosetta as well as testing it on new problems.

The Laederach Lab is interested in better understanding the relationship between RNA structure and folding and human disease. We use a combination of computational and experimental approaches to study the process of RNA folding and in the cells. In particular, we develop novel approaches to analyze and interpret chemical and enzymatic mapping data on a genomic scale. We aim to fundamentally understand the role of RNA structure in controlling post-transcriptional regulatory mechanisms, and to interpret structure as a secondary layer of information (  We are particularly interested in how human genetic variation affects RNA regulatory structure. We investigate the relationship between disease-associated Single Nucleotide Polymorphisms occurring in Human UTRs and their effect on RNA structure to determine if they form a RiboSNitch.

Our dynamic group are broadly involve in three topics: (i) prevention of infectious diseases by harnessing interactions between secreted antibodies and mucus, (ii) immune response to biomaterials, and (iii) targeted delivery of nanomedicine.  Our group was the first to discover that secreted antibodies can interact with mucins to trap pathogens in mucus.  We are now harnessing this approach to engineer improved passive and active immuniation (i.e. vaccines) at mucosal surfaces, as well as understand their interplay with the mucosal microbiome.  We are also studying the adaptive immune response to polymers, including anti-PEG antibodies, and how it might impact the efficacy of PEGylated therapeutics.  Lastly, we are engineering fusion proteins that can guide targeted delivery of nanomedicine to heterogenous tumors and enable personalized medicine.

We study protein structure and dynamics as they relate to protein function and energetics. We are currently using NMR spectroscopy (e.g. spin relaxation), computation, and a variety of other biophysical techniques to gain a deeper understanding of proteins at atomic level resolution.  Of specific interest is the general phenomenon of long-range communication within protein structures, such as observed in allostery and conformational change.  A. Lee is a member of the Molecular & Cellular Biophysics Training Program.

Our research focuses on the discovery and design of new gene-encoded bioactive small molecules from bacteria.  We are interested in understanding enzymes involved in their biosynthesis, their therapeutic mechanisms of action, and implications in health and diseases, in particular with respect to the human microbiome.  This work is driven by intensive development of new metabolomics and genomics technologies.  We subsequently manipulate and engineer these biosynthetic pathways to make new and improved molecules as potential therapeutics such as antibiotics.

The research interests of the Liu Lab are in functional proteomics and biopharmaceuticals. Currently we are working on the following projects:  (1). Using systems biology approaches to decipher the signaling pathways mediated by disease-related proteases such as caspases and granzymes and by post-translationally modified histones. We address these problems by performing functional protein selections using mRNA-displayed proteome libraries from human, mouse, Drosophila, and C. elegans. (2). Developing novel protein therapeutics and nucleic acid therapeutics that can be used in tumor diagnosis, treatment, and nanomedicine. We use various amplification-based molecular evolution approaches such as mRNA-display and in vivo SELEX to develop novel single domain antibody mimics on the basis of very stable protein domains or to generate aptamers on the basis of nuclease-resistant nucleic acids, that bind to important biomarkers on the surface of cancer cells. We further conjugate these biomarker-binding affinity reagents to small molecule drugs or nanoparticles for targeted delivery of therapeutic agents. (3). Identifying the protein targets of drugs or drug candidates whose action mechanisms are unknown. We combine molecular proteomic and chemical biology approaches to identify the protein targets of drugs whose target-binding affinities are modest.

Lockett, Ryen Matthew
Website | Email

Research in the Lockett group focuses on the development of analytical model systems to: i) chemically modify the surface of thin films, and study chemical and biochemical reactions occurring on those surfaces; ii) study drug metabolism in an environment that closely mimics the human liver; iii) measure tumor invasion in an environment that closely mimics human tissue. /  / While these problems require techniques found in analytical chemistry, biochemistry, molecular biology, bioengineering, and surface science we are particularly interested in the technologies that allow us to quantitatively measure reactions and analytes.

MacDonald, Jeffrey
Website | Email

Dr. Macdonald is the Founder and Scientific Director of the new Metabolomic Facility and Co-Scientific Director of the joint UNC/NCSU/NOAA Marine MRI facility at Pivers Island near Beaufort NC. Dr. Macdonald’s research goal is to combine metabolomics and tissue engineering and apply these tools to quantitative biosystem analysis.

My research program is centered on understanding fundamental aspects of cell division. During cell division, complex DNA-protein interactions transform diffuse interphase chromatin into discrete mitotic chromosomes, condensing them several thousand fold to facilitate spatial segregation of sister chromatids. Concomitantly, kinetochores form specifically at centromere regions of chromosomes and regulate force-producing interactions with microtubules. While these processes are absolutely required for genomic stability, the in vivo mechanisms of chromosome and kinetochore assembly remain unsolved problems in biology. I investigate 1) the spatiotemporal regulation of mitotic chromosome assembly, and 2) the molecular basis of centromere specification. To do so, I will combine biochemical approaches with high-resolution light microscopy of live cells, whole organisms, and in vitro systems.

My research philosophy is summed up by a quote from Nobelist Albert Szent-Gyorgyi: “Discovery is to see what everybody has seen and to think what nobody has thought.” My lab studies the molecular and physical mechanisms of cell shape change during cytokinesis and tissue biogenesis during development. Specifically, we are defining how cells ensure proper alignment and sliding of cytoskeletal filaments, and determining the shape of the cell throughout division. To do so, we combine developmental biology, cell biology, biochemistry, and quantitative image analysis.

Our fundamental interest is in how the nervous system processes sensory information. We have been studying these problems using in vitro preparations that allow us to examine how single cells in the auditory cortex and auditory brainstem operate to integrate synaptic input, generate precisely timed action potentials, and adapt to changes in sensory input produced by hearing loss.  This has involved investigations into the kinds of ion channels expressed in particular subsets of cells, determination of the kinetics and voltage dependence of those channels, studies of synaptic transmission, and the generation of computational models that reflect our current understanding of how these cells operate and produce responses to acoustic stimuli.  A longstanding interest has been in the types of processing that take place in the elaborate network of cells in cerebral cortex. The structure and function of neurons in the auditory cortex depends extensively on sensory experience. We are now studying the functional spatial organization of auditory cortical neural networks at the level of connections between classes individual cells, using optical methods in normal mice and mice with noise-induced hearing loss.

The McGinty lab uses structural biology, protein chemistry, biochemistry, and proteomics to study epigenetic signaling through chromatin in health and disease. Chromatin displays an extraordinary diversity of chemical modifications that choreograph gene expression, DNA replication, and DNA repair – misregeulation of which leads to human diseases, especially cancer. We prepare designer chromatin containing specific combinations of histone post-translational modifications. When paired with X-ray crystallography and cryo-electron microscopy, this allows us to interrogate mechanisms underlying epigenetic signaling at atomic resolution.

We are interested in the physics of soft and squishy materials, especially the organization and mechanics of living cellular materials. We use theory and simulation in close collaboration with experiments to understand the complex structural and mechanical behavior of these systems. These questions and our approach to them are interdisciplinary and intersect several traditional fields, including cell biology, biophysics, fluid dynamics and applied mathematics.

We are a comprehensive, collaborative group with a primary focus on lead and early drug discovery for oncology and epigenetic targets and pathways. Our research applies reagent production, primary assay development, high-throughput screening, biophysics, and exploratory cell biology to enable small molecule drug discovery programs in solid partnership with collaborators, both within the Center for Integrative Chemical Biology and Drug Discovery and across the UNC campus. We apply small molecule hit discovery to highly validated biochemical targets as well as phenotypic cell-based assays. Our methods include various fluorescence-based readouts and high content microscopy. Examples of some of our collaborative small molecule discovery programs include, inhibition of chromatin methyl-lysine reader proteins, hit discovery for small GTPases such as K-Ras and Gaq, inhibitors of inositol phosphate kinases, inhibitors of protein-protein interactions involving CIB1 and MAGE proteins, and several cell-based efforts including a screen for compounds that enhance c-Myc degradation in pancreatic cancer cells. In addition, we are developing a DNA-encoded library approach for hit discovery to complement traditional high-throughput screening. Our ultimate goal is discovery of new chemical probes and medicines for exploratory biology and unmet medical needs, respectively.

My graduate students and I use the formalism of equilibrium thermodynamics and the tools of molecular biology and biophysics to understand how nature designs proteins.

We are interested in unraveling the molecular basis for human disease and discover new treatments focused on human and microbial targets. Our work extends from atomic-level studies using structural biology, through chemical biology efforts to identify new drugs, and into cellular, animal and clinical investigations. While we are currently focused on the gut microbiome, past work has examined how drugs are detected and degraded in humans, proteins designed to protect soldiers from chemical weapons, how antibiotic resistance spreads, and novel approaches to treat bacterial infections. The Redinbo Laboratory actively works to increase equity and inclusion in our lab, in science, and in the world. Our lab is centered around collaboration, open communication, and trust. We welcome and support anyone regardless of race, disability, gender identification, sexual orientation, age, financial background, or religion. We aim to: 1) Provide an inclusive, equitable, and encouraging work environment 2) Actively broaden representation in STEM to correct historical opportunity imbalances 3) Respect and support each individual’s needs, decisions, and career goals 4) Celebrate our differences and use them to discover new ways of thinking and to better our science and our community

We have three main areas of research focus: (1) Nucleotide excision repair: The only known mechanism for the removal of bulky DNA adducts in humans. (2) DNA damage checkpoints:  Biochemical pathways that transiently block cell cycle progression while DNA contains damage.  (3) Circadian rhythm:  The oscillations in biochemical, physiological and behavioral processes that occur with the periodicity of about 24 hours.

Our lab examines cytoskeletal dynamics, the molecules that regulate it and the biological processes it is involved in using live cell imaging, in vitro reconstitution and x-ray crystallography.  Of particular interest are the microtubule +TIP proteins that dynamically localize to microtubule plus ends, communicate with the actin network, regulate microtubule dynamics, capture kinetochores and engage the cell cortex under polarity-based cues.

Our laboratory studies signal transduction systems controlled by heterotrimeric G proteins as well as Ras-related GTPases using a variety of biophysical, biochemical and cellular techniques. Member of the Molecular & Cellular Biophysics Training Program.

Superfine’s group studies stimulus-responsive active and living materials from the scale of individual molecules to physiological tissues, including DNA, cells and microfluidic-based tissue models. We develop new techniques using advanced optical, scanning probe, and magnetic force microscopy. We pursue diverse physiological phenomena from cancer to immunology to mucus clearance in the lung. Our work includes developing systems that mimic biology, most recently in the form of engineered cilia arrays that mimic lung tissue while providing unique solutions in biomedical devices.

Waters, Marcey
Website | Email

Our research focuses on several different aspects of biomolecular recognition, including (1) protein post-translational modifications, (2) protein-nucleic acid interactions, and (3) protein-protein interactions that are important in a number of different biological areas, including epigenetics and cancer.  We use bio-organic chemistry combined with peptide design and biophysical chemistry to study these interactions and to develop new tools for inhibition and/or sensing of these biomolecular interactions.

One of the most amazing discoveries of recent years has been the profound role of RNA in regulating all areas of biology. Further, the functions of many RNA molecules require that an RNA fold back on itself to create intricately and complexly folded structures. Until recently, however, we had little idea of the broad contributions of RNA structure and function because there simply did not exist rigorous methods for understanding RNA molecules in cells and viruses. The vision of our laboratory is therefore, first, to invent novel chemical microscopes that reveal quantitative structure and function interrelationships for RNA and, second, to apply these RNA technologies to broadly important problems in biology. Mentoring and research in the lab are highly interdisciplinary. Students learn to integrate ideas and concepts spanning chemical and computational biology, and technology development, and extending to practical applications in virology, understanding biological processes in cells, and discovery of small molecule ligands targeted against medically important RNAs. Each student has a distinct project which they drive to an impactful conclusion, but do so as part of the lab team which, collectively, has shown an amazing ability to solve big problems in RNA biology. The overarching goal of mentoring in the lab is to prepare students for long-term leadership roles in science.

The overall objective of our research is to understand the connection between structure of protein-DNA complexes, protein dynamics and function.  We currently focus on the methyl-cytosine binding domain (MBD) family of DNA binding proteins.  The MBD proteins selectively recognize methylated CpG dinucleotides and regulate gene expression critical for both normal development and carcinogenesis.  We use a combination of NMR spectroscopy and biophysical analyses to study protein-DNA and protein-protein complexes involving the MBD proteins.  Building on these studies, we are developing inhibitors of complex formation as potential molecular therapeutics for b-hemoglobinopathies and cancer.

The Yan lab works at the interface of material science, photonics, and biology. We synthesize metal, metal oxide and upconversion nanoparticles for biophotonics and biomedicine applications. We use holographic optical tweezers and atomic force microscope (AFM) to trap and manipulate single nanoparticles, and use them as probes to study nano-bio interactions, including biosensing, bionanomechanics and cell biology. We conduct these studies with a customized multi-modal correlative optical system that combines the nanomanipulation module with advanced optical microscopy and spectroscopy techniques.

Yeh, Elaine
Website | Email

The site of microtubule attachment to the chromosome is the kinetochore, a complex of over 60 proteins assembled at a specific site on the chromosome, the centromere. Almost every kinetochore protein identified in yeast is conserved through humans and the organization of the kinetochore in yeast may serve as the fundamental unit of attachment. More recently we have become interested in the role of two different classes of ATP binding proteins, cohesions (Smc3, Scc1) and chromatin remodeling factors (Cac1, Hir1, Rdh54) in the structural organization of the kinetochore and their contribution to the fidelity of chromosome segregation.

Our laboratory is focusing on developing and applying solution-state NMR methods, together with computational and biochemical approaches, to understand the molecular basis of nucleic acid functions that range from enzymatic catalysis to gene regulation. In particular, we aim to visualize, with atomic resolution, the entire dynamic processes of ribozyme catalysis, riboswitch-based gene regulation, and co-transciptional folding of mRNA. The principles deduced from these studies will provide atomic basis for rational manipulation of RNA catalysis and folding, and for de novo design of small molecules that target specific RNA signals. Research program in the laboratory provides diverse training opportunities in areas of spectroscopy, biophysics, structural biology, computational modeling, and biochemistry.