Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Deal, Milena

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Bioinformatics, Genetics, Genomics

“I am interested in examining the heritability of complex disease using genomics. I want to use both bioinformatics and experimental techniques to work toward this goal. I have interest in other subject areas as well, such as microbiology, but do want to focus on labs that have computational PhD students.”

Anderson, Ashlyn (Ash)

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Evolutionary Biology, Genetics, Genomics, Molecular Biology, Pathogenesis & Infection

“I have broad equal interest in pathogenesis/infection (new to me but has always captivated my interests) and in basic science questions related to chromatin, genetics, and evolution (familiar to me + I already know I love researching these kinds of questions!) I am hoping to narrow down and explore my interests between these further with rotations in virology, genetics-genomics, or bacteriology labs. “

Schrank, Travis

EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Biophysics, Cancer Biology, Cancer Signaling & Biochemistry, Chemical Biology, Computational Biology, Evolutionary Biology, Genetics, Genomics, Molecular Biology, Molecular Mechanisms of Disease, Translational Medicine, Virology

I am a surgeon-scientist specialized in head and neck cancers. My goal is to address translationalquestions with genomic data and bioinformatic methods, as well as benchtop experimentation. My clinical practice as a head and neck cancer surgeon also influences my research by helping me seek solutions to problems that will directly inform gaps in the current treatment protocols.

I have developed a strong interest in HPV genomics as well as HPV/host genome integrations, as these factors are intrinsically related to transcriptional diversity and patient outcomes in HPV-associated head and neck cancers. Our work has helped to demonstrate that a novel mechanism of HPV-mediated oncogenesis requiring NF-kB activation is present in nearly 50% of oropharyngeal tumors. In this vein, we are aggressively investigating the cellular interplay between the NF-kB pathway and persistent HPV infection, tumor radiation response, NRF2 signaling, and more.

Another outgrowth of this work has been investigating APOBEC3B and its non-canonical roles in regulating transcription. Our preliminary work has demonstrated that APOBEC3B has surprisingly strong transcriptional effects in HPV+ HNSCC cells and may promote oncogenesis and tumor maintenance by suppressing the innate immune response and influencing the HPV viral lifecycle.

Our group also have a strong interest in translational genomic studies. Our group is working to develop methods that will make gene expression-based biomarkers more successful in the clinic, as well as studying many aspects of genomic alterations that contribute to the development of squamous cell carcinomas.

Liu, Qingyun

EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Bioinformatics, Ecology, Evolutionary Biology, Genetics, Genomics, Microscopy/Imaging, Molecular Biology, Molecular Mechanisms of Disease, Pathogenesis & Infection

Traditionally, basic science has sought to enter the translational pipeline through what can be referred to as “Bottom-Up” science, that is, studies that start with a hypothesis in the lab and aim to develop clinical relevance of the findings. In some cases, notably in conventional antibiotic development, this has worked well – but it assumes one-size fits all solutions that are only as good as our assumptions about the biology of many infectious diseases such as tuberculosis. By contrast, my research focuses on a “Top-Down” approach, leveraging the power of bacterial population genomics to identify bacterial processes important for Mtb success in people and to then employ cutting-edge experimental techniques to mechanistically dissect these processes with the goal of leveraging them using new translational tools.

In my work to date, I have applied this “Top-Down” strategy to define bacterial determinants of treatment outcomes and transmission success, as evident in first-author/corresponding author publications in prestigious journals such as Science, Nature Ecology Evolution, Cell Host Microbe, Science Advances, Genome Biology, PNAS, etc. My work combines expertise in evolutionary biology and bacterial genomics, cutting-edge bacterial genetics and high-throughput experimental phenotyping.

In my own lab, I will use these tools to (1) define the biological mechanisms that enable Mtb to survive antibiotic treatment; (2) identify bacterial determinants of TB transmission success; and (3) elucidate the evolutionary mechanisms underlying the emergence of new bacterial pathogens.

Johri, Parul
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Computational Biology, Evolutionary Biology, Genomics

Our research interests broadly span population genetics, statistical inference, and evolutionary genomics. We are interested in how evolutionary processes like changes in population size, recombination, mutation, selection and factors such as genome architecture shape patterns of genomic variation. Work in the lab involves employing computational and theoretical approaches, statistical method development, or using an empirical approach to perform evolutionary inference and ask fundamental questions in population genetics.

Wang, Jeremy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Bioinformatics, Cancer Genomics, Computational Biology, Genomics, Microbiome

Our research focuses on long-read (single-molecule) sequencing and informatics. We develop novel methods to enable more efficient *omic analysis and apply carefully architected high-performance computing approaches to improve the utility of genomics in studies of human diseases, including infectious disease, cancer, and GI. Ongoing work includes genomic epidemiology of SARS-CoV-2, MPXV, and antibiotic resistance; classification of pediatric leukemias and solid tumors in low-resource settings using nanopore transcriptome sequencing; and metagenomics/metataxonomics of mucosa-associated microbiota in inflammatory bowel diseases.

Raffield, Laura
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Genetics, Genomics

Keywords: genetic epidemiology, human genetics, genome-wide association studies, precision medicine, multi-omics, cardiovascular disease, inflammation, hematological traits

In my research program, I use human genomics and multi-omics to understand inherited and environmental risk factors for cardiometabolic diseases and related quantitative traits. I work to link genetic variants to function through integration with multi-omics data, including transcriptomic, methylation, proteomic, and metabolomic measures. This work has important implications for cardiometabolic risk prediction across diverse populations and improved understanding of disease biology. A focus on understudied African American and Hispanic/Latino populations is a central theme of my research; human genetics research is dramatically unrepresentative of global populations, with ~95% of genome-wide association study participants of European or East Asian ancestry. As complex trait genetics moves into the clinic, increasing diversity is essential to ensure that all populations benefit from the promise of precision medicine.

I play a leadership role in collaborative efforts in human genetics, for example serving as a Genetics Working Group co-chair for the Jackson Heart Study (JHS), one of the largest population based studies of African Americans, and an Inflammation/Hematology working group co-chair for the Population Architecture Using Genomics and Epidemiology (PAGE) consortium. I am also a co-convener of the Multi-Omics working group for the NHLBI Trans-Omics for Precision Medicine (TOPMed) program.

Divaris, Kimon
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Oral & Craniofacial Biomedicine

RESEARCH INTEREST
Genomics, Translational Medicine

Dr. Divaris has diverse research interests and a portfolio interrogating both proximal and distal determinants of oral health and disease, ranging from genomics of oral health traits and behavioral sciences to health disparities and dental education. The core data-generating work is carried our via NIH grants U01-DE025046 (ZOE 2.0 study, “Genome-wide association study of early childhood caries”) and P01HD103133-02S2 (Pediatric HIV/AIDS Cohort Study (PHACS); Biofilm multi-omics in the AMPU UP cohort-research supplement). I am a pediatric dentist with doctoral and postdoctoral training in oral and genetic epidemiology and interests in biological determinants of oral health and disease.

Brunk, Elizabeth
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Chemistry, Pharmacology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Cancer Biology, Computational Biology, Genomics, Pharmacology, Structural Biology, Systems Biology, Translational Medicine

A growing body of work in the biomedical sciences generates and analyzes omics data; our lab’s work contributes to these efforts by focusing on the integration of different omics data types to bring mechanistic insights to the multi-scale nature of cellular processes. The focus of our research is on developing systems genomics approaches to study the impact of genomic variation on genome function. We have used this focus to study genetic and molecular variation in both natural and engineered cellular systems and approach these topics through the lens of computational biology, machine learning and advanced omics data integration. More specifically, we create methods to reveal functional relationships across genomics, transcriptomics, ribosome profiling, proteomics, structural genomics, metabolomics and phenotype variability data. Our integrative omics methods improve understanding of how cells achieve regulation at multiple scales of complexity and link to genetic and molecular variants that influence these processes. Ultimately, the goal of our research is advancing the analysis of high-throughput omics technologies to empower patient care and clinical trial selections. To this end, we are developing integrative methods to improve mutation panels by selecting more informative genetic and molecular biomarkers that match disease relevance.

Lin, Jessica
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Genetics, Genomics, Molecular Biology, Molecular Medicine, Pathogenesis & Infection

Dr. Lin is an infectious disease physician-scientist whose research lies at the interface of clinical and molecular studies on malaria. My current projects focus on 1) determinants of malaria transmission from human hosts to mosquitos and 2) the epidemiology and relapse patterns of Plasmodium ovale in East Africa. Work in my lab involves applying molecular tools (real-time PCR, amplicon deep sequencing, whole genome sequencing, and to a lesser extent antigen and antibody assays) to samples collected in clinical field studies to learn about malaria epidemiology, transmission, and pathogenesis.