Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Vetreno, Ryan

EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Addiction/Alcohol Research, Aging/Alzheimer's, Behavior, Biochemistry, Brain Development, Developmental Biology, Disease, Epigenetics & Chromatin Biology, Immunology, Microbiome, Molecular Biology, Molecular Mechanisms of Disease, Neurobiology, Neurodevelopmental Disorders, Neuropharmacology, Pathology, Pharmacology, Regenerative Medicine

My research interests involve investigation of proinflammatory neuroimmune and epigenetic mechanisms in animal models of developmental neurobiology and neurodegeneration, including (1) alcohol pharmacology, (2) alcohol responsivity and tolerance, (3) adolescent neurodevelopment, (4) cholinergic system and neurocircuitry, (5) microglial function, and (6) Alzheimer’s disease. A major focus of the laboratory is elucidation of neuroimmune and epigenetic mechanisms underlying adolescent binge alcohol-induced disruption of basal forebrain cholinergic neurocircuitry in adulthood. A second major focus of the laboratory is investigation of lasting adolescent binge drinking-induced neuroimmune priming as a novel etiological factor contributing to the onset and progression of basal forebrain neuropathology in Alzheimer’s disease. Our laboratory combines ex vivo and in vivo rodent models of alcohol abuse and Alzheimer’s disease with innovative molecular techniques.

Williams, Morika
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pathobiology & Translational Science

RESEARCH INTEREST
Behavior, Neurobiology, Pharmacology, Physiology, Translational Medicine

Early life and adult pain can have drastic effects on neurodevelopment and overall quality of life. In the Williams’ Pain, Aging, and Interdisciplinary Neurobehavioral (P.A.I.N.) Lab, our research focuses on behavioral neuroscience and the mechanisms of neurobiology and neurophysiology of pain processing, with a special emphasis on the neonatal. The ultimate research goal is to better understand, recognize, and alleviate pain in the newborn to improve the quality of life in adulthood by uncovering new assessment tools and interventional strategies. Our research interests include the mechanisms of neurobiology and neurophysiology of pain processing, neonatal pain, chronic pain, neurobehavior, osteoarthritis, translational medicine, anesthesia/analgesics, and evoked and non-evoked pain assessment tools. The P.A.I.N. Lab has both pre-clinical and clinical studies to help close the gap in translation.

Hantman, Adam

EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Physiology

The Hantman Lab is interested in how functions emerge from network activity in the nervous system. Particularly, we study how the nervous system generates patterns of activity that control our bodies in the world. Our approach combines genetics, anatomy, physiology, perturbations, and a dynamical systems approach.

Christoffel, Dan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Physiology, Translational Medicine

Dr. Christoffel aims to understand how chronic exposure to particular stimuli (i.e. stress, food, drugs) alters the functioning of specific neural circuits and investigates the mechanisms that regulate these experience-dependent changes. Current studies focus on 1) how experience-dependent plasticity in the nucleus accumbens regulates reward processing, with a focus on the consumption of palatable foods and stress modulation of food intake, and 2) examine the regulatory role of neuromodulators in hedonic feeding.

The ultimate goal of the Christoffel Lab’s research is to understand how adaptive changes in brain function occur and how this can lead to the development of psychiatric disorders. We employ cutting-edge technologies to understand the complex interactions of multiple neural systems that allow us to adapt to our environment and regulate motivated behavior.

Baldwin, Katie
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cell Biology, Developmental Biology, Molecular Biology, Neurobiology

Building a functioning brain requires an elaborate network of interactions between neurons and glia. We use mouse genetics, primary cell culture, quantitative proteomics, molecular biology, and super resolution microscopy to study glial cells during brain development. We are particularly interested in how astrocytes acquire their complex morphology and communicate with neighboring astrocytes, neurons, and oligodendrocytes. Furthermore, we are investigating how glial dysfunction drives the pathogenesis of brain disorders such as autism, schizophrenia, and leukodystrophy.

Walsh, Jessica
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Behavior, Neurobiology, Pharmacology, Physiology, Translational Medicine

Social behavior is composed of a variety of distinct forms of interactions and is fundamental to survival. Several neural circuits must act in concert to allow for such complex behavior to occur and perturbations, either genetic and/or environmental, underlie many psychiatric and neurodevelopment disorders. The Walsh lab focuses on gaining an improved understanding of the biological basis of behavior using a multi-level approach to elucidate the molecular and circuit mechanisms underlying motivated social behavior. The goal of our research is to uncover how neural systems govern social interactions and what alterations occur in disease states to inform the development of novel therapeutics or treatment strategies.

One of the major focuses of the Walsh lab is on understanding how genetic mutations, as well as experience, lead to circuit adaptations that govern impaired behavior seen in mouse models of autism spectrum disorders (ASD). Our systems level analysis includes: 1) modeling these disorders with well described genetic markers, 2) defining causal relationships between activity within discrete anatomical structures in the brain that are critical to the physiology of the symptom under investigation (e.g. sociability), 3) performing deep characterization of the physiological profiles of these circuits and using that information to target specific receptors or molecules that may not have been considered for the treatment of specific ASD symptoms.

Pegard, Nicolas
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Applied Physical Sciences, Neuroscience

RESEARCH INTEREST
Behavior, Cell Biology, Molecular Biology, Neurobiology

Our lab develops computer-driven optical instrumentation for applications in biology and neurosciences, beyond traditional imaging systems. Our research is interdisciplinary and welcomes backgrounds in optical engineering, computer sciences, biology or neurosciences. Our primary goal is to develop optical brain-machine interfaces and other technologies that use advanced light sources and detectors to probe and manipulate cellular functions deep into tissue at depths where traditional microscopy tools can no longer retrieve images.

Coleman, Leon
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Behavior, Cancer Biology, Cell Signaling, Drug Discovery, Immunology, Molecular Biology, Neurobiology, Pharmacology, Translational Medicine

The overriding goal of Dr. Coleman’s work is to identify novel treatments for alcohol use disorders (AUD) and associated peripheral disease pathologies. Currently, this includes: the role of neuroimmune Signaling in AUD pathology, the role of alcohol-associated immune dysfunction in associated disease states, and novel molecular and subcellular mediators of immune dysfunction such as extracellular vesicles, and regenerative medicine approaches such as microglial repopulation.

Rodríguez-Romaguera, Jose
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Pharmacology

Psychiatric disorders such as Anxiety and Autism Spectrum Disorders are often characterized by a rapid and amplified arousal response to stimuli (hyperarousal), which is often followed by a motivational drive to avoid such stimuli. Our lab studies the neuronal circuits that drive hyperarousal states by monitoring neuronal activity with single-cell precision using in vivo calcium imaging techniques in both head-fixed (two-photon microscopy) and freely-moving (miniature head-mounted microscopes) mice to record and track the activity of hundreds of individual neurons with both genetic and projection specificity.

Scherrer, Gregory
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Neuroscience, Pharmacology

RESEARCH INTEREST
Cell Biology, Genetics, Neurobiology, Pharmacology, Physiology

Pain is a complex experience with sensory and emotional components. While acute pain is essential for survival, chronic pain is a debilitating disease accompanied by persistent unpleasant emotions. Efficient medications against chronic pain are lacking, and the absence of alternative to opioid analgesics has triggered the current Opioid Epidemic. Our lab studies how our nervous system generates pain perception, at the genetic, molecular, cellular, neural circuit, and behavioral levels. We also seek to understand how opioids alter activity in neural circuits to produce analgesia, but also side effects such as tolerance, addiction and respiratory depression. To this aim, we investigate the localization, trafficking and signaling properties of opioid receptors in neurons. These studies clarify pain and opioid mechanisms for identifying novel non-addictive drug targets to treat pain and strategies to dissociate opioid analgesia from deleterious effects.