Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Baldwin, Katie
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cell Biology, Developmental Biology, Molecular Biology, Neurobiology

Building a functioning brain requires an elaborate network of interactions between neurons and glia. We use mouse genetics, primary cell culture, quantitative proteomics, molecular biology, and super resolution microscopy to study glial cells during brain development. We are particularly interested in how astrocytes acquire their complex morphology and communicate with neighboring astrocytes, neurons, and oligodendrocytes. Furthermore, we are investigating how glial dysfunction drives the pathogenesis of brain disorders such as autism, schizophrenia, and leukodystrophy.

Pegard, Nicolas
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Cell Biology, Molecular Biology, Neurobiology

Our lab develops computer-driven optical instrumentation for applications in biology and neurosciences, beyond traditional imaging systems. Our research is interdisciplinary and welcomes backgrounds in optical engineering, computer sciences, biology or neurosciences. Our primary goal is to develop optical brain-machine interfaces and other technologies that use advanced light sources and detectors to probe and manipulate cellular functions deep into tissue at depths where traditional microscopy tools can no longer retrieve images.

Smith, Keriayn
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Genetics, Genomics, Molecular Biology

We are interested in elucidating context-specific functions of products from single long noncoding RNA (lncRNA) loci. Since lncRNAs have been implicated in many cellular processes, it is critical to delineate specific roles for each lncRNA. Moreover, as they are increasingly associated with diseases including developmental disorders, degenerative diseases, and cancers, defining their functions will be an important precursor to their use as diagnostics and therapeutics. We specialize in adopting -omics approaches including genomics, transcriptomics and proteomics, combined with single molecule methods to study the intermolecular interactions – RNA-protein, RNA-RNA and RNA-chromatin that lncRNAs use to execute their functions in normal stem cells and cancer.

Vogt, Matthew
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Molecular Biology, Pathogenesis & Infection, Translational Medicine, Virology

We want to understand why common pediatric respiratory virus infections cause severe disease in some people. Currently we focus on enterovirus D68, which typically causes colds but rarely causes acute flaccid myelitis, a polio-like paralyzing illness in children. We study both the pathogen and the host immune response, as both can contribute to pathogenesis. Projects focus on use of reverse genetic systems to create reporter viruses to infect both human respiratory epithelial cultures and small animal models such as mice. Human monoclonal antibody effects on pathogenesis are also of interest.

Coleman, Leon
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Behavior, Cancer Biology, Cell Signaling, Drug Discovery, Immunology, Molecular Biology, Neurobiology, Pharmacology, Translational Medicine

The overriding goal of Dr. Coleman’s work is to identify novel treatments for alcohol use disorders (AUD) and associated peripheral disease pathologies. Currently, this includes: the role of neuroimmune Signaling in AUD pathology, the role of alcohol-associated immune dysfunction in associated disease states, and novel molecular and subcellular mediators of immune dysfunction such as extracellular vesicles, and regenerative medicine approaches such as microglial repopulation.

Aleman, Maria
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Biochemistry, Cardiovascular Biology, Cell Biology, Molecular Biology

The broad goal of our research is to understand basic mechanisms regulating erythropoiesis (red blood cell differentiation and maturation). Our current work focuses on a family of dual functional proteins (poly C binding proteins) which both regulate RNA processing and chaperone iron within cells. Using biochemical, cellular, and in vivo models we explore the cross talk between iron trafficking and RNA regulation mediated by poly C binding proteins and how these activities are modulated by disease.

Hagood, Jim
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Molecular Biology, Systems Biology, Translational Medicine

I am a Pediatric Pulmonologist. My lab studies cell phenotype regulation in the context of lung fibrosis and lung development. We use in vitro and ex vivo models, mouse models, human tissue, and multi-omic approaches to explore fibroblast phenotypes in the formation of lung alveoli and in the pathologic modeling of lung fibrosis, and explore novel therapies for lung disease.

Possible Rotation Projects:

Markers of mechanotransduction in lung alveolar formation (immunofluorescence, bioinformatics)
Biological aging of the lung (DNA methylation)
Precision cut lung slice culture to model fibrosis and test therapies ex vivo
Fibroblast phenotype regulation in transgenic mice
Fibroblast-epithelial interactions in lung organoids

Rau, Christoph
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cardiovascular Biology, Computational Biology, Genetics, Genomics, Molecular Biology, Systems Biology, Translational Medicine

Heart failure is an increasingly prevalent cause of death world-wide, but the genetic and epigenetic underpinnings of this disease remain poorly understood. Our laboratory is interested in combining in vitro, in vivo and computational techniques to identify novel markers and predictors of a failing heart. In particular, we leverage mouse populations to perform systems-level analyses with a focus on co-expression network modeling and DNA methylation, following up in primary cell culture and CRISPR-engineered mouse lines to validate our candidate genes and identify potential molecular mechanisms of disease progression and amelioration.

Bowser, Jessica

EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pathobiology & Translational Science

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Molecular Biology, Translational Medicine

We are studying tissue integrity and repair to develop innovative approaches for regenerative medicine and cancer prevention. We concentrate on highly regenerative (endometrial and intestinal) tissues and are particularly interested in how persistent inflammation influences the breakdown of biochemical pathways that oversee genome stability, stem cell plasticity, and cell adhesions and how these events influence future tissue repair and onset of disease, such as cancer. Projects employ a variety of molecular, cellular, biochemical, genetic, and machine learning techniques that span across cell culture systems, genetically engineered mouse models, and human tissues to understand the impact of acute and chronic inflammation on cell division, cytoskeletal dynamics, and DNA repair in regenerating epithelial cells.

Rizvi, Imran
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Drug Delivery, Molecular Biology, Nanomedicine, Pharmacology, Toxicology, Translational Medicine

Dr. Rizvi’s expertise is in imaging and therapeutic applications of light, bioengineered 3D models and animal models for cancer, and targeted drug delivery for inhibition of molecular survival pathways in tumors. His K99/R00 (NCI) develops photodynamic therapy (PDT)-based combinations against molecular pathways that are altered by fluid stress in ovarian cancer. He has co-authored 46 peer-reviewed publications and 5 book chapters with a focus on PDT, biomedical optics, and molecular targeting in cancer.