Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Schrank, Travis

EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Biophysics, Cancer Biology, Cancer Signaling & Biochemistry, Chemical Biology, Computational Biology, Evolutionary Biology, Genetics, Genomics, Molecular Biology, Molecular Mechanisms of Disease, Translational Medicine, Virology

I am a surgeon-scientist specialized in head and neck cancers. My goal is to address translationalquestions with genomic data and bioinformatic methods, as well as benchtop experimentation. My clinical practice as a head and neck cancer surgeon also influences my research by helping me seek solutions to problems that will directly inform gaps in the current treatment protocols.

I have developed a strong interest in HPV genomics as well as HPV/host genome integrations, as these factors are intrinsically related to transcriptional diversity and patient outcomes in HPV-associated head and neck cancers. Our work has helped to demonstrate that a novel mechanism of HPV-mediated oncogenesis requiring NF-kB activation is present in nearly 50% of oropharyngeal tumors. In this vein, we are aggressively investigating the cellular interplay between the NF-kB pathway and persistent HPV infection, tumor radiation response, NRF2 signaling, and more.

Another outgrowth of this work has been investigating APOBEC3B and its non-canonical roles in regulating transcription. Our preliminary work has demonstrated that APOBEC3B has surprisingly strong transcriptional effects in HPV+ HNSCC cells and may promote oncogenesis and tumor maintenance by suppressing the innate immune response and influencing the HPV viral lifecycle.

Our group also have a strong interest in translational genomic studies. Our group is working to develop methods that will make gene expression-based biomarkers more successful in the clinic, as well as studying many aspects of genomic alterations that contribute to the development of squamous cell carcinomas.

Chung, Kay
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Cancer Immunology, Cancer Signaling & Biochemistry, Chemical Biology, Computational Biology, Gene Therapy, Immunology, Molecular Biology, Signal Transduction, Systems Biology, Translational Medicine, Virology

The Chung lab is engineering immune cells, particularly T cells, to achieve maximum therapeutic efficacy at the right place and timing. We explore the crossroads of synthetic biology, immunology, and cancer biology. Particularly, we are employing protein engineering, next-gen sequencing, CRISPR screening, and bioinformatics to achieve our objectives:

(1) Combinatorial recipes of transcription factors for T cell programming.

(2) Technologies for temporal regulation and/or rewiring of tumor and immune signal activation (chemokine, nuclear, inhibitor receptors).

(3) Synthetic oncolytic virus for engineering tumor-T cell crosstalk.

Liu, Qingyun

EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Bacteriology, Bioinformatics, Ecology, Evolutionary Biology, Genetics, Genomics, Microscopy/Imaging, Molecular Biology, Molecular Mechanisms of Disease, Pathogenesis & Infection

Traditionally, basic science has sought to enter the translational pipeline through what can be referred to as “Bottom-Up” science, that is, studies that start with a hypothesis in the lab and aim to develop clinical relevance of the findings. In some cases, notably in conventional antibiotic development, this has worked well – but it assumes one-size fits all solutions that are only as good as our assumptions about the biology of many infectious diseases such as tuberculosis. By contrast, my research focuses on a “Top-Down” approach, leveraging the power of bacterial population genomics to identify bacterial processes important for Mtb success in people and to then employ cutting-edge experimental techniques to mechanistically dissect these processes with the goal of leveraging them using new translational tools.

In my work to date, I have applied this “Top-Down” strategy to define bacterial determinants of treatment outcomes and transmission success, as evident in first-author/corresponding author publications in prestigious journals such as Science, Nature Ecology Evolution, Cell Host Microbe, Science Advances, Genome Biology, PNAS, etc. My work combines expertise in evolutionary biology and bacterial genomics, cutting-edge bacterial genetics and high-throughput experimental phenotyping.

In my own lab, I will use these tools to (1) define the biological mechanisms that enable Mtb to survive antibiotic treatment; (2) identify bacterial determinants of TB transmission success; and (3) elucidate the evolutionary mechanisms underlying the emergence of new bacterial pathogens.

Vetreno, Ryan

EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Addiction/Alcohol Research, Aging/Alzheimer's, Behavior, Biochemistry, Brain Development, Developmental Biology, Disease, Epigenetics & Chromatin Biology, Immunology, Microbiome, Molecular Biology, Molecular Mechanisms of Disease, Neurobiology, Neurodevelopmental Disorders, Neuropharmacology, Pathology, Pharmacology, Regenerative Medicine

My research interests involve investigation of proinflammatory neuroimmune and epigenetic mechanisms in animal models of developmental neurobiology and neurodegeneration, including (1) alcohol pharmacology, (2) alcohol responsivity and tolerance, (3) adolescent neurodevelopment, (4) cholinergic system and neurocircuitry, (5) microglial function, and (6) Alzheimer’s disease. A major focus of the laboratory is elucidation of neuroimmune and epigenetic mechanisms underlying adolescent binge alcohol-induced disruption of basal forebrain cholinergic neurocircuitry in adulthood. A second major focus of the laboratory is investigation of lasting adolescent binge drinking-induced neuroimmune priming as a novel etiological factor contributing to the onset and progression of basal forebrain neuropathology in Alzheimer’s disease. Our laboratory combines ex vivo and in vivo rodent models of alcohol abuse and Alzheimer’s disease with innovative molecular techniques.

Duprey, Kelsey

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Biochemistry, Genetics, Molecular Biology

“I am interested in DNA repair and replication, cell cycle and chromosome segregation, epigenetics, and developmental biology. I am looking to work with Drosophila, C. elegans, zebrafish, or cell cultures.”

Bingham, Johnna

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Biochemistry, Drug Discovery, Molecular Biology

“I’m interested in doing research at the intersection of where chemistry and biology meet and using discovery to improve the lives and health of others.”

Muron, Savannah

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Genetics, Molecular Biology, Translational Medicine

“I am interested in the development and study of gene therapies and gene-editing technologies. I am most interested in studying potential effects of gene therapy in genetic diseases such as CF or in their technological development. I am also interested in understanding the molecular mechanisms by which gene editing technologies work and how they can be utilized to further their development and use in creating models and treating disease.”

Simmons, Jake

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Biochemistry, Biophysics, Molecular Biology

“I find myself loving molecular biology techniques, but I always come back to asking how the chemistry works. For this reason, I maintain a great openness in where I land in my rotations, however, I am confident any sort of mechanistic approach will fill my curiosity. Anywhere between protein and cells, interests me. Biochemistry or molecular biology is where I see myself thriving. Particularly, I recently developed an interest in Cryo-EM, however, I’ll admit I have never researched using it.”

Dawoud, Alyaa

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cancer Biology, Immunology, Molecular Biology

“I am interested in studying cancer immunotherapy as well as the molecular mechanism in cancer, particularly brain cancer.”

Guerra, Paolo

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cancer Biology, Cell Biology, Molecular Biology

“I enjoy understanding the cell’s regulation of post translational modification of proteins. Understanding how this mechanism can change a cell’s function and even a cell’s fate is fascinating. It’s also a great area to research as it provides a great deal of therapeutic targets for disease.”