Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Clapp, Phil
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Immunology, Physiology, Toxicology, Translational Medicine

My lab in the UNC CEMALB uses translational in vitro and clinical in vivo approaches to investigate how inhaled xenobiotics modify respiratory innate immune responses in people with and without existing lung disease. A central component of my research is the integration of biomedical engineering, additive manufacturing, and advanced cell culture methods to evaluate the health effects of new and emerging tobacco products such as e-cigarettes. I believe the best research is achieved through collaboration across disciplines and welcome interested trainees to contact me to learn more about my lab.

Ferris, Marty
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genetics, Genomics, Immunology, Pathogenesis & Infection, Systems Biology, Virology

In the Ferris lab, we use genetically diverse mouse strains to better understand the role of genetic variation in immune responses to a variety of insults. We then study these variants mechanistically. We also develop genetic and genomic datasets and resources to better identify genetic features associated with these immunological differences.

Baxter, Tori
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Pathology, Translational Medicine, Virology

My research aims to understand the pathogenesis and host immune response to emerging and re-emerging viral infections, including encephalitic alphaviruses such as chikungunya virus and respiratory coronaviruses such as SARS-CoV-2. Other areas of interest include examination of genetic and environmental factors that influence the response to infection and disease outcome, evaluation of vaccines and novel therapeutics against emerging viruses, and development and optimization of animal models of infectious disease.

Rubinsteyn, Alex
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genomics, Immunology, Translational Medicine, Virology

I work on predicting the determinants of adaptive immune responses. Most of my work has focused on T-cell epitope prediction for mutant antigens derived from cancer. I have collaborated closely with clinical groups to translate this work in personalized cancer vaccine trials. More recently I have also been working on joint T-cell and B-cell prediction for viral pathogens. The technologies and techniques applied across all of my projects are at the intersection of computational immunology, genomics, and machine learning.

Moran, Timothy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Immunology, Toxicology, Translational Medicine

Our research focuses on how environmental exposures impact the development of allergic diseases including asthma and food allergy. We are specifically interested in how exposure to environmental pollutants and immunostimulatory molecules (adjuvants) influence allergic sensitization. The goals of our laboratory are to: (1) define the key environmental adjuvants within the indoor exposome that promote allergic sensitization; (2) characterize the molecular mechanisms by which environmental adjuvants and pollutants condition lung antigen presenting cells to induce allergic immune responses; and (3) identify biomarkers of environmental adjuvant exposure that are associated with increased risk for allergic sensitization in children. Through these research endeavors, we hope to identify potential therapeutic targets for environment-mediated allergic diseases, as well as environmental interventions to mitigate the risk for allergic disease development.

Vogt, Matthew
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Molecular Biology, Pathogenesis & Infection, Translational Medicine, Virology

We want to understand why common pediatric respiratory virus infections cause severe disease in some people. Currently we focus on enterovirus D68, which typically causes colds but rarely causes acute flaccid myelitis, a polio-like paralyzing illness in children. We study both the pathogen and the host immune response, as both can contribute to pathogenesis. Projects focus on use of reverse genetic systems to create reporter viruses to infect both human respiratory epithelial cultures and small animal models such as mice. Human monoclonal antibody effects on pathogenesis are also of interest.

Coleman, Leon
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Behavior, Cancer Biology, Cell Signaling, Drug Discovery, Immunology, Molecular Biology, Neurobiology, Pharmacology, Translational Medicine

The overriding goal of Dr. Coleman’s work is to identify novel treatments for alcohol use disorders (AUD) and associated peripheral disease pathologies. Currently, this includes: the role of neuroimmune Signaling in AUD pathology, the role of alcohol-associated immune dysfunction in associated disease states, and novel molecular and subcellular mediators of immune dysfunction such as extracellular vesicles, and regenerative medicine approaches such as microglial repopulation.

Wallet, Shannon

EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Oral & Craniofacial Biomedicine

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Immunology, Pathogenesis & Infection, Physiology, Toxicology, Translational Medicine

My research interests are focused on mechanisms associated with altered innate immune functions, which lead to dysregulated adaptive immunity. Currently my research program has three major arms integrated through with a central philosophy. Specifically, our laboratory focuses on the contribution of epithelial cell biology and signaling to innate and adaptive immune homeostasis and dysfunction. We study the contribution of what I term ‘epithelial cell innate immune (dys)function’ to three major disease conditions: pancreatic cancer, type 1 diabetes (autoimmunity), and periodontal disease (autoinflammation). While appearing to be a diverse research program, we have found that many of the mechanisms and systems in play are surprisingly (or maybe not so surprisingly) similar allowing for rapid translation of our findings. Importantly, previous investigations into the role of epithelial cells in immunobiology have been hindered by a lack of robust primary cell culture techniques, which our laboratory has been able to overcome using both animal and human tissues. Thus, using our novel and unique tools we are able to evaluate our findings in the human conditions, again making translation of our findings that much more feasible. In addition to my primary research objectives, my collaborative research programs, have allowed me to be involved, at some level, in investigating the basic biology of health, multiple autoimmune conditions, autoinflammation, sepsis, and exercise induced inflammation I have been blessed with the opportunities to couple my passions and expertise with that of others to bring together multiple research communities with the goal of advancing human health and hope to be able to continue to do so for years to come.

Browne, Edward
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Cell Biology, Immunology, Pathogenesis & Infection, Systems Biology, Virology

We study the molecular mechanisms of HIV latency. Transcriptional silencing of HIV is a key mechanism of persistence in patients, and is a barrier to viral eradication, but little is known about the latent reservoir or the molecular mechanisms that regulate it. As such, our repertoire of drugs for targeting latently infected cells is limited. Some latency reversing agents (LRAs) have been developed, but these are typically reactivate only a minor subset of proviruses. This inefficiency is in part due to the reservoir not constituting a uniform target, but instead being a heterogeneous set of cells with diverse characteristics and restrictions to HIV expression. However, most analyses of latency use bulk cell cultures assays in which crucial information about the behavior of individual cells is lost. Also, latently infected cells in patient samples are exceedingly rare, making them very difficult to study directly. New technological breakthroughs in the field of single cell analysis as well as the development of primary cell models for HIV latency now open the possibility of observing how latently infected cells form and are maintained at single cell resolution. Our lab has developed tools to study the establishment, maintenance and reversal of HIV latency at single cell resolution using multi-omics methods. Furthermore, we combine these approaches with genetic perturbation, time-lapse microscopy and novel bioengineering tools to gain insight into how the host cell regulates HIV latency. We have recently discovered using single cell RNAseq (scRNAseq) that latency in primary CD4 T cells is associated with expression of a distinct transcriptional signature (Bradley et al 2018). Our hypothesis is that this signature represents part of a cellular program that regulates latency, and that this program is an exciting novel target for the development of LRAs. Ongoing projects in the lab involve the application of new technologies to our model systems, and testing/validation of the roles of host cell pathways we have identified in HIV latency. Our overall goal is to identify new targets for the development of drugs to clear the HIV reservoir.

Rebuli, Meghan E.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Toxicology, Translational Medicine

Research in my lab focuses on investigating sex specific effects of air pollutants and new and emerging tobacco products on respiratory immune health. Specifically, the Rebuli lab is examining how the interaction of sex (genetic and hormonal) and toxicant exposure can alter respiratory health. As the majority of research has been historically conducted in men, male animals, or male-derived cell culture models, there is a paucity of information on female respiratory health and sex differences in the effects of toxicant exposure. We are working to fill this knowledge gap by better understanding the role of genetic and hormonal sex on respiratory health. This is particularly important in understanding the development of sex-biased diseases, where men or women are more susceptible to disease development after environmental exposures, such viral infection, asthma, and chronic obstructive pulmonary disease (COPD). We are interested in toxicants such as ozone, wood smoke, cigarette smoke, and e-cigarette aerosols. We investigate effects at both the individual and population level by using clinical (observational clinical studies and prospective exposure trials) and translational (in vitro and ex vivo cell culture) models of the respiratory immune system.