Research Interest: Pathogenesis & Infection
Name | PhD Program | Research Interest | Publications |
---|---|---|
Thurlow, Lance PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
By 2035, more than 500 million people worldwide will be diagnosed with diabetes. Individuals with diabetes are prone to frequent and invasive infections that commonly manifest as skin and soft tissue infections (SSTIs). Staphylococcus aureus is the most commonly isolated pathogen from diabetic SSTI. S. aureus is a problematic pathogen that is responsible for tens of thousands of invasive infections and deaths annually in the US. Most S. aureus infections manifest as skin and soft tissue infections (SSTIs) that are usually self-resolving. However, in patients with comorbidities, particularly diabetes, S. aureus SSTIs can disseminate resulting in systemic disease including osteomyelitis, endocarditis and sepsis. The goal of my research is to understand the complex interactions between bacterial pathogens and the host innate immune response with focus on S. aureus and invasive infections associated with diabetes. My research is roughly divided into two project areas in order to understand the contributions of the pathogen and the host response to invasive infections associated with diabetes. Project 1: Defining mechanisms of immune suppression in diabetic infections. Project 2: Determine the role of bacterial metabolism in virulence potential and pathogenesis. |
Sheahan, Tim WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Dr. Sheahan is an expert virologist with a primary appointment in the Department of Epidemiology in the Gillings School of Global Public Health and a secondary appointment in Microbiology and Immunology in the School of Medicine. His research is focused on understanding emerging viral diseases and developing new means to stop them with a current focus on coronavirus and hepacivirus. |
Lin, Jessica WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Dr. Lin is an infectious disease physician-scientist whose research lies at the interface of clinical and molecular studies on malaria. My current projects focus on 1) determinants of malaria transmission from human hosts to mosquitos and 2) the epidemiology and relapse patterns of Plasmodium ovale in East Africa. Work in my lab involves applying molecular tools (real-time PCR, amplicon deep sequencing, whole genome sequencing, and to a lesser extent antigen and antibody assays) to samples collected in clinical field studies to learn about malaria epidemiology, transmission, and pathogenesis. |
Arias, Gaby |
PHD PROGRAM RESEARCH INTEREST |
|
Darwitz, Ben |
PHD PROGRAM RESEARCH INTEREST |
|
Higgins, Jaclyn |
PHD PROGRAM RESEARCH INTEREST |
|
Jackson, Jahnelle |
PHD PROGRAM RESEARCH INTEREST |
|
Liu, Jamie |
PHD PROGRAM RESEARCH INTEREST |
|
McCullough, Morgan |
PHD PROGRAM RESEARCH INTEREST |
|
Obarow, Lizzy |
PHD PROGRAM RESEARCH INTEREST |