Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Chung, Kay
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Cancer Immunology, Cancer Signaling & Biochemistry, Chemical Biology, Computational Biology, Gene Therapy, Immunology, Molecular Biology, Signal Transduction, Systems Biology, Translational Medicine, Virology

The Chung lab is engineering immune cells, particularly T cells, to achieve maximum therapeutic efficacy at the right place and timing. We explore the crossroads of synthetic biology, immunology, and cancer biology. Particularly, we are employing protein engineering, next-gen sequencing, CRISPR screening, and bioinformatics to achieve our objectives:

(1) Combinatorial recipes of transcription factors for T cell programming.

(2) Technologies for temporal regulation and/or rewiring of tumor and immune signal activation (chemokine, nuclear, inhibitor receptors).

(3) Synthetic oncolytic virus for engineering tumor-T cell crosstalk.

Miao, Yinglong
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Aging/Alzheimer's, Biochemistry, Biophysics, Cardiovascular Disease, Computational Biology, Drug Discovery, Pharmacology, Signal Transduction

Our research is focused on the development of novel theoretical and computational methods and AI techniques, which greatly enhance computer simulations and facilitate simulation analysis, and the application of these methods, making unprecedented contributions to biomolecular modeling and drug discovery. In collaboration with leading experimental groups, we combine complementary simulations and experiments to uncover functional mechanisms and design drugs of important biomolecules, including G-protein-coupled receptors (GPCRs), membrane-embedded proteases, RNA-binding proteins, and RNA. At the interface of computational biology, chemistry, biophysics, bioinformatics and pharmacology, our research aims to address three major topics: (i) development of biomolecular enhanced sampling and AI techniques, (ii) multiscale computational modeling of critical cellular signaling pathways, and (iii) AI-driven drug discovery of medically important proteins and RNA for treatments of neurological disorders, heart failure and cancers.

Khan, Shahzad
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Aging/Alzheimer's, Biochemistry, Cell Biology, Molecular Mechanisms of Disease, Neurobiology, Signal Transduction

Maintaining health and reducing disease-risk requires the brain to properly transduce signals across specialized regions and cell types. My lab studies neural signaling at the primary cilium, an antenna-like organelle that helps cells sense and respond to environmental cues. The function of primary cilia in the adult brain remains enigmatic. To probe cilia function, the lab will utilize mouse models, neural cultures, human brain samples, single-cell transcriptomics, proteomics, and microscopy. Ultimately, we aim to identify therapeutic targets for diseases like Alzheimer’s and Parkinson’s.

Xi, Gang
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Autoimmune Disorders, Biochemistry, Cell Biology, Cell Signaling, Diabetes, Physiology, Signal Transduction, Translational Medicine

My research focuses on signal transduction, proteins posttranslational modification, and protein/protein interaction under varieties of stress/disease conditions. One of my major research areas is vascular smooth muscle signal transduction under hyperglycemic and oxidative stress conditions. Most recently, regulation of vascular smooth muscle cells phenotypic switch under hyperglycemic/uremic conditions was funded by NIH. In addition, I investigate autoantigens that are responsible for autoimmune diseases, such as MCD/FSGS, which make the precise diagnosis and individualized treatment plan possible.

Chen, Gang
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Molecular Biology, Molecular Mechanisms of Disease, Pulmonary Research, Regenerative Medicine, Respiratory Physiology & Infections, Signal Transduction, Stem Cells

We use cutting edge technology to study pathogenesis of human pulmonary diseases including cystic fibrosis, Job’s syndrome, idiopathic pulmonary fibrosis by both human specimens, mouse genetic models, with a goal of finding the therapies. Recently, we developed a serial of lung epithelial-lineage tracing systems, providing the powerful tools for identify mechanisms of lung disease involved in post-acute sequelae SARS-CoV-2 infection, also known as “long COVID”, in collaboration with Dr. Ralph Baric’s Lab at UNC-CH.