PhD Program: Applied Physical Sciences
Name | PhD Program | Research Interest | Publications |
---|---|---|
Yan, Zijie WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Yan lab works at the interface of material science, photonics, and biology. We synthesize metal, metal oxide and upconversion nanoparticles for biophotonics and biomedicine applications. We use holographic optical tweezers and atomic force microscope (AFM) to trap and manipulate single nanoparticles, and use them as probes to study nano-bio interactions, including biosensing, bionanomechanics and cell biology. We conduct these studies with a customized multi-modal correlative optical system that combines the nanomanipulation module with advanced optical microscopy and spectroscopy techniques. |
Nazockdast, Ehssan WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We are interested in the physics of soft and squishy materials, especially the organization and mechanics of living cellular materials. We use theory and simulation in close collaboration with experiments to understand the complex structural and mechanical behavior of these systems. These questions and our approach to them are interdisciplinary and intersect several traditional fields, including cell biology, biophysics, fluid dynamics and applied mathematics. |
Freeman, Ronit WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My lab focuses on developing bioinspired molecular constructs and material platforms that can mimic proteins and be programmed to respond to stimuli resulting from biomolecular recognition. Major efforts are directed to design peptide- and nucleic acid-based scaffolds or injectable nanostructures to create artificial extracellular matrices that can directly signal cells. |
Superfine, Richard WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Superfine’s group studies stimulus-responsive active and living materials from the scale of individual molecules to physiological tissues, including DNA, cells and microfluidic-based tissue models. We develop new techniques using advanced optical, scanning probe, and magnetic force microscopy. We pursue diverse physiological phenomena from cancer to immunology to mucus clearance in the lung. Our work includes developing systems that mimic biology, most recently in the form of engineered cilia arrays that mimic lung tissue while providing unique solutions in biomedical devices. |
Pegard, Nicolas WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our lab develops computer-driven optical instrumentation for applications in biology and neurosciences, beyond traditional imaging systems. Our research is interdisciplinary and welcomes backgrounds in optical engineering, computer sciences, biology or neurosciences. Our primary goal is to develop optical brain-machine interfaces and other technologies that use advanced light sources and detectors to probe and manipulate cellular functions deep into tissue at depths where traditional microscopy tools can no longer retrieve images. |