Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Clapp, Phil
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Immunology, Physiology, Toxicology, Translational Medicine

My lab in the UNC CEMALB uses translational in vitro and clinical in vivo approaches to investigate how inhaled xenobiotics modify respiratory innate immune responses in people with and without existing lung disease. A central component of my research is the integration of biomedical engineering, additive manufacturing, and advanced cell culture methods to evaluate the health effects of new and emerging tobacco products such as e-cigarettes. I believe the best research is achieved through collaboration across disciplines and welcome interested trainees to contact me to learn more about my lab.

Ferguson, Kelly
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Toxicology, Translational Medicine

The Perinatal and Early Life Epidemiology Group conducts research on how maternal exposure to chemicals impacts pregnancy and the development of the fetus and child. We also investigate biological mechanisms of action — such as inflammation, oxidative stress, and endocrine disruption — that connect chemical exposures to adverse birth outcomes.

Moran, Timothy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Immunology, Toxicology, Translational Medicine

Our research focuses on how environmental exposures impact the development of allergic diseases including asthma and food allergy. We are specifically interested in how exposure to environmental pollutants and immunostimulatory molecules (adjuvants) influence allergic sensitization. The goals of our laboratory are to: (1) define the key environmental adjuvants within the indoor exposome that promote allergic sensitization; (2) characterize the molecular mechanisms by which environmental adjuvants and pollutants condition lung antigen presenting cells to induce allergic immune responses; and (3) identify biomarkers of environmental adjuvant exposure that are associated with increased risk for allergic sensitization in children. Through these research endeavors, we hope to identify potential therapeutic targets for environment-mediated allergic diseases, as well as environmental interventions to mitigate the risk for allergic disease development.

Rebuli, Meghan E.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Toxicology, Translational Medicine

Research in my lab focuses on investigating sex specific effects of air pollutants and new and emerging tobacco products on respiratory immune health. Specifically, the Rebuli lab is examining how the interaction of sex (genetic and hormonal) and toxicant exposure can alter respiratory health. As the majority of research has been historically conducted in men, male animals, or male-derived cell culture models, there is a paucity of information on female respiratory health and sex differences in the effects of toxicant exposure. We are working to fill this knowledge gap by better understanding the role of genetic and hormonal sex on respiratory health. This is particularly important in understanding the development of sex-biased diseases, where men or women are more susceptible to disease development after environmental exposures, such viral infection, asthma, and chronic obstructive pulmonary disease (COPD). We are interested in toxicants such as ozone, wood smoke, cigarette smoke, and e-cigarette aerosols. We investigate effects at both the individual and population level by using clinical (observational clinical studies and prospective exposure trials) and translational (in vitro and ex vivo cell culture) models of the respiratory immune system.

Rizvi, Imran
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Drug Delivery, Molecular Biology, Nanomedicine, Pharmacology, Toxicology, Translational Medicine

Dr. Rizvi’s expertise is in imaging and therapeutic applications of light, bioengineered 3D models and animal models for cancer, and targeted drug delivery for inhibition of molecular survival pathways in tumors. His K99/R00 (NCI) develops photodynamic therapy (PDT)-based combinations against molecular pathways that are altered by fluid stress in ovarian cancer. He has co-authored 46 peer-reviewed publications and 5 book chapters with a focus on PDT, biomedical optics, and molecular targeting in cancer.

Chorley, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Genomics, Molecular Biology, Systems Biology, Toxicology

The long-term goal of my research is to incorporate ‘omic (genomic, epigenomic, proteomic, etc.) measurements into environmental human health hazard identification, prioritization and risk assessment using a quantitative and interpretable biological systems framework. Thus, short-term goals have been to develop the molecular tools to investigate key biological events, and measurable biomarkers linked to those events, related to important disease processes that are impacted by environmental chemical exposures, such as liver and lung toxicity.  We have focused recent efforts on early-in-life genomic and epigenetic alterations and linkages to latent adverse outcome susceptibility due to commons exposures, genetics, and pre-existing conditions. Our laboratory uses cutting edge techniques such as gene editing tools including CRISPR-based methods; next generation nucleic acid-based sequencing to probe the genome and epigenome; advance, high-throughput microscopy; targeted RNA, DNA, and non-coding RNA measurements such as digital drop PCR and Fireplex; and advanced in vitro models.

Ward-Caviness, Cavin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Toxicology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genomics, Systems Biology, Translational Medicine

We are actively engaged in multiple research arenas centered around understanding the associations between environmental exposures (primarily air pollution) and health outcomes. We use large clinical cohorts and electronic health records to understand associations between air pollution and health outcomes such as cardiovascular disease, metabolic disease, and aging. We use metabolomics and epigenetic data (primarily DNA methylation) to investigate molecular mechanisms, and highlight the integration of ‘omics data in a systems biology framework to better understand dysregulated pathways. Finally, we have projects centered around methods development and causal analyses to improve our understanding of the biology central to environmental health effects.

Williams, Carmen J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Developmental Biology, Toxicology, Translational Medicine

Reproductive biology of early mammalian embryogenesis including gametogenesis, fertilization, and preimplantation embryo development. Effects of environmental disrupting chemicals on female reproductive tract development and function, with a focus on epigenetic alterations.

Tong, Haiyan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cardiovascular Biology, Cell Signaling, Physiology, Toxicology, Translational Medicine

Research in my laboratory focuses on the cardiovascular effects of air pollution and other environmental pollutants in human, animal, and in vitro models, as well as the dietary interventional strategies to mitigate the adverse health effects of air pollution exposure. We are currently conducting two clinical studies to investigate the cardiopulmonary effects of air pollution exposure, and to determine whether dietary omega-3 fatty acids can mitigate the air pollution-induced health effects in human volunteers. These studies provide good training opportunities for students who are interested in training in clinical and translational toxicology research.

Pearce, Ken`
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences, Toxicology

RESEARCH INTEREST
Biochemistry, Biophysics, Cell Biology, Chemical Biology, Drug Discovery

We are a comprehensive, collaborative group with a primary focus on lead and early drug discovery for oncology and epigenetic targets and pathways. Our research applies reagent production, primary assay development, high-throughput screening, biophysics, and exploratory cell biology to enable small molecule drug discovery programs in solid partnership with collaborators, both within the Center for Integrative Chemical Biology and Drug Discovery and across the UNC campus. We apply small molecule hit discovery to highly validated biochemical targets as well as phenotypic cell-based assays. Our methods include various fluorescence-based readouts and high content microscopy. Examples of some of our collaborative small molecule discovery programs include, inhibition of chromatin methyl-lysine reader proteins, hit discovery for small GTPases such as K-Ras and Gaq, inhibitors of inositol phosphate kinases, inhibitors of protein-protein interactions involving CIB1 and MAGE proteins, and several cell-based efforts including a screen for compounds that enhance c-Myc degradation in pancreatic cancer cells. In addition, we are developing a DNA-encoded library approach for hit discovery to complement traditional high-throughput screening. Our ultimate goal is discovery of new chemical probes and medicines for exploratory biology and unmet medical needs, respectively.