Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Merker, Jason
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Genomics, Pharmacology, Translational Medicine

Our laboratory is focused on translating novel molecular biomarkers into clinical oncology practice, with the overarching goal of improving the care and survival of patients with cancer. Our group is highly collaborative and applies genomic, genetic, bioinformatic, informatic, statistical, and molecular approaches. Current projects in the laboratory include:

  1. Correlative genomic testing to support clinical trials
  2. Expanded clinical applications of RNA sequencing
  3. Development and application of cell-free circulating tumor nucleic acid assays
Jacox, Laura
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Oral & Craniofacial Biomedicine, Pathobiology & Translational Science

RESEARCH INTEREST
Behavior, Developmental Biology, Molecular Biology, Pathology, Translational Medicine

The Jacox Lab aims to improve patient care and outcomes in oral health. This goal takes shape via several tracks of interdisciplinary human studies:

-A primary focus of the lab has been on outcomes of jaw surgery patients, who suffer from Dentofacial Disharmonies (DFD). Patients with DFD have severe skeletal disproportions with underbites or open bites, necessitating orthodontics and jaw surgery for full correction. Roughly 80% of our patients with DFD exhibit speech distortions, compared to 5% of the general population, which negatively impact their self-confidence and quality of life. Despite patients pursuing invasive surgery, it is unknown whether jaw surgery is palliative for articulation errors. We are using ultrasound, audio and video imaging to explore the mechanism of articulation errors among patients with DFD. Furthermore, our lab is conducting a longitudinal study of DFD patients to determine if jaw surgery improves speech distortions, in collaboration with oral surgeons, linguistics and speech pathology.

-An additional focus of our lab has been studying use of Animal Assisted Therapy for management of anxiety and pain in dentistry. Dental anxiety effects 21-50% of patients and is associated with poor long-term oral health outcomes and need for urgent care due to dental avoidance. Non-pharmacological behavior interventions like dog therapy holds promise for reducing pain and anxiety perception for patients, and therefore improving dental experiences and promoting improved health outcomes. The lab is conducting a randomized controlled trial to evaluate best practices for canine therapy in pediatric dentistry, in collaboration with pediatric dentists, a psychology professor whose expertise is anxiety, and the UNC Biobehavioral Lab.

-As part of the COVID-19 research response, we are studying FDA-approved antiseptic mouth rinses for their ability to limit salivary viral infectivity to reduce risk of SARS-CoV-2 transmission. If an oral rinse is found to be efficacious at inactivating the SARS-CoV-2 virus, it could be a valuable preventative measure in settings where masks are removed, such as dental care, social settings, eating out, or work presentations. This study is conducted in collaboration with leading virologists and infectious disease experts at UNC.

Maeda, Nobuyo

EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Nutrition, Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Genetics, Metabolism, Pathology, Translational Medicine

Overall goal of our research is to gain better knowledge of gene-gene and gene-environment interactions in common cardiovascular conditions in humans. We have been modifying mouse genome in such a way that resulting mice can model quantitative variations of a specific gene product that occur in human population. With these mice, we explore causes, mechanisms, and nutritional treatments of cardiovascular complications resulted from common conditions such as diabetes, lung infections, and pregnancy-associated hypertension. Current focus is on the oxidative stress and effects of vitamin B12 as antioxidant and beyond.

Alexander, Thomas
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Genomics, Translational Medicine

Dr. Alexander works at the interface cancer genomics, clinical trials, and global pediatric oncology with three areas of research focus

1) Investigation of new cancer therapeutics through early phase clinical trials for high risk acute leukemia

2) Exploration of the biology of minimal residual disease in acute lymphoblastic leukemia, through RNA sequencing and epigenetic studies, at both a bulk and single cell level. The ultimate goal is to develop more rational therapeutic targets for patients with persistent MRD.

3) Development of a novel genomic sequencing approach for cancer diagnostics in low and middle income counties.

Baxter, Tori
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Pathology, Translational Medicine, Virology

My research aims to understand the pathogenesis and host immune response to emerging and re-emerging viral infections, including encephalitic alphaviruses such as chikungunya virus and respiratory coronaviruses such as SARS-CoV-2. Other areas of interest include examination of genetic and environmental factors that influence the response to infection and disease outcome, evaluation of vaccines and novel therapeutics against emerging viruses, and development and optimization of animal models of infectious disease.

Benhabbour, Rahima
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Biomaterials, Drug Delivery, Nanomedicine, Pharmacology

Dr. Benhabbour’s academic research focuses on development of novel tunable delivery platforms and polymer-based devices to treat or prevent a disease. Her work combines the elegance of organic and polymer chemistry with the versatility of engineering and formulation development to design and fabricate efficient and translatable nanocarriers and drug delivery systems for cancer treatment and HIV prevention.

Dr. Benhabbour has also Founded her startup company Anelleo, Inc. (AnelleO) in 2016 to develop the first 3D printed intravaginal ring as a platform technology for women’s health.

Current technologies in development in Dr. Benhabbour’s Lab include:
– 3D Printed intravaginal ring technology: A) Multipurpose prevention technology (MPT) for prevention of HIV/STIs and unplanned pregnancy.
– Polymer based ultra-long-acting injectable implant for HIV prevention and treatment.
– Combinatory chitosan/cellulose nanocrystals thermoresponsive hydrogel system: A) Sub-Q or intraosseous injectable for treatment of osteoporosis; B) Bio-ink for 3D bioprinting; C) Scaffold for stem cell delivery (e.g. iNSCs for treatment of post-surgical glioblastoma.
– Mucoadhesive thin film for treatment of vulvodynia.
– Targeted nanoparticles and hydrogel scaffolds for treatment of NSCLC.

Bowser, Jessica

EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pathobiology & Translational Science

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Molecular Biology, Translational Medicine

We are studying tissue integrity and repair to develop innovative approaches for regenerative medicine and cancer prevention. We concentrate on highly regenerative (endometrial and intestinal) tissues and are particularly interested in how persistent inflammation influences the breakdown of biochemical pathways that oversee genome stability, stem cell plasticity, and cell adhesions and how these events influence future tissue repair and onset of disease, such as cancer. Projects employ a variety of molecular, cellular, biochemical, genetic, and machine learning techniques that span across cell culture systems, genetically engineered mouse models, and human tissues to understand the impact of acute and chronic inflammation on cell division, cytoskeletal dynamics, and DNA repair in regenerating epithelial cells.

Gladden, Andrew
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Developmental Biology, Genetics, Translational Medicine

The Gladden lab studies how cell adhesion and cell polarity are intertwined in normal tissue development and how these pathways are altered in diseases such as cancer. We use a combination of 3D cell culture, mouse models and protein biochemistry to study how cell polarity and adhesion regulate tissue organization. Our work focuses on the interplay between cell adhesion and cell polarity proteins at the adherens junction and how these proteins regulate tissue organization. We concentrate on the development of the endometrium epithelium in the female reproductive tract and the cell biology of endometrial cancer.

Broaddus, Russell
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Cell Biology, Molecular Medicine, Pathology, Translational Medicine

My research lab focuses on the molecular pathogenesis of endometrial cancer, the most common gynecologic cancer in the Western world. Current projects include developing molecular diagnostics for predicting endometrial cancer histotype, stage, and recurrence; developing clinical and lab-based algorithms for the identification of patients with hereditary endometrial cancer (Lynch Syndrome); discovering novel molecular mediators of endometrial cancer invasion and metastasis; identifying signaling pathways important in the pathogenesis of endometrial cancer; and identifying molecular determinants of health disparities in endometrial cancer.

Iweala, Onyinye
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Translational Medicine

Individuals with alpha-gal syndrome, characterized by delayed anaphylaxis (severe allergic reactions) to mammalian meat, have been reported across the globe, yet we have limited understanding of the mechanisms underlying this condition. My lab explores the role of glycolipids interacting with different cells within our innate and adaptive immune systems in the pathogenesis of this allergy. Our vision is to broaden understanding of glycolipids and their role in hypersensitivity disorders. We also want to understand why tick exposure, which is associated with the development of alpha-gal meat allergy, can promote allergic immune responses and how epigenetic dysregulation may influence allergic immune responses. PhD Program: Pathobiology and Translational Science.