Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Chen, Jiakun
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Brain Development, Cell Biology, Developmental Biology, Genetics, Model Organisms, Neurobiology, Neurodevelopmental Disorders

The goal of our research is to understand how astrocytes develop and how they interact with neural elements during nervous system formation, function, and maintenance. Our lab uses fruit fly Drosophila and zebrafish Danio rerio to explore fundamental aspects of astrocyte biology. We leverage the powerful genetics and unparalleled molecular toolsets in flies to uncover gene function, and we exploit the advanced live-imaging techniques in zebrafish to study astrocyte-neuron interactions in vivo.

Sengupta, Soma
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Drug Delivery, Drug Discovery, Neurobiology

I am building a career in both clinical and translational research of brain tumors, primary and those resulting from metastasis. Clinically, I primarily see adult brain tumor patients and conduct/initiate clinical trials to meet the needs of this patient population. On the research side, I have a long-standing research interest in clinically-important membrane transport proteins. I conducted genetic and biochemical research on transporters, channels, and pumps during my doctoral research at the University of Cambridge, my postdoctoral study at Yale University, and various institutions (Yale, Johns Hopkins University, Cambridge) while training in medicine at Cambridge. Membrane transport proteins I have worked on include the proton-ATPase (mentor: C. Slayman) and the TAP transporter (mentor: P. Lehner), which are critical to antigen processing. After receiving my medical degree, I pursued advanced medical and additional research training in the U.S. (Johns Hopkins, Harvard) and received continuous funding from the NIH to pursue this research (NINDS-R25, NCI-K12, NINDS-K08). My first independent appointment as an Assistant Professor, Neuro-oncologist was at Emory University in 2016. At the University of Cincinnati, I was the Associate Director of the UC Brain Tumor Center and a recipient of the Harold C. Schott Endowed Chair.

At this time, my lab is focused on: (1) the development of a therapeutic approach for the treatment of primary and pediatric brain tumors, as well as cancers that commonly metastasize to the CNS (lung and melanoma); and (2) translation of technological advances that may impact treatment and quality of life in patients with cancer.

Azizoglu, Berfin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cardiovascular Biology, Cell Biology, Developmental Biology, Disease, Neurobiology, Regenerative Medicine, Stem Cells

Our lab studies body-wide control of organ growth and regeneration. The mammalian body is reticulated by blood vessels and neurons. How these networks communicate with organ cells to orchestrate local and body-wide decisions is obscure. We study this question with a focus on the mouse liver, the uniquely regenerative visceral organ. Current projects in the lab include 1-researching the role of a novel vascular progenitor network in liver regeneration, 2-determining the mechanisms of injury perception by liver innervation, and 3-in vitro assembly of reticulated, responsive liver tissue.

Graves, Christina
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Oral & Craniofacial Biomedicine

RESEARCH INTEREST
Gastrointestinal Biology, Immunology, Microscopy/Imaging, Molecular Mechanisms of Disease, Neurobiology, Organismal Biology

Fundamentally, our research is focused on how the nervous and immune systems are developmentally educated by infectious and non-infectious stressors across the “gum-to-gut” axis. One current major focus of the lab is to elucidate how early life stress impacts the developing gut and dentition using zebrafish as an ideal — and translational — model organism. We utilize a combination of advanced imaging, next-generation sequencing, and genetic approaches to achieve a greater understanding of how early life events dictate health outcomes across the lifespan and generations. In addition to these primary research interests, we maintain active collaborations with other groups within the Adams School of Dentistry and across campus.

Rausser, Shannon

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Computational Biology, Neurobiology, Pharmacology

I’m interested to research the neural basis of psychiatric disorders. In particular, the neural mechanisms underlying psychedelic treatments in relation to anxiety and depression.

Anderman, Meghan

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Metabolism, Neurobiology, Physiology

“I’m interested in understanding adaptations the body utilizes within extreme conditions/environments, such as undersea, space, and high altitudes. Further, I’m interested in protective countermeasures that could be developed for those working within these conditions, and the translational aspects of these adaptations in the context of stress, metabolism, and general physiology.”

Khan, Shahzad
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Aging/Alzheimer's, Biochemistry, Cell Biology, Molecular Mechanisms of Disease, Neurobiology, Signal Transduction

Maintaining health and reducing disease-risk requires the brain to properly transduce signals across specialized regions and cell types. My lab studies neural signaling at the primary cilium, an antenna-like organelle that helps cells sense and respond to environmental cues. The function of primary cilia in the adult brain remains enigmatic. To probe cilia function, the lab will utilize mouse models, neural cultures, human brain samples, single-cell transcriptomics, proteomics, and microscopy. Ultimately, we aim to identify therapeutic targets for diseases like Alzheimer’s and Parkinson’s.

Vetreno, Ryan

EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Addiction/Alcohol Research, Aging/Alzheimer's, Behavior, Biochemistry, Brain Development, Developmental Biology, Disease, Epigenetics & Chromatin Biology, Immunology, Microbiome, Molecular Biology, Molecular Mechanisms of Disease, Neurobiology, Neurodevelopmental Disorders, Neuropharmacology, Pathology, Pharmacology, Regenerative Medicine

My research interests involve investigation of proinflammatory neuroimmune and epigenetic mechanisms in animal models of developmental neurobiology and neurodegeneration, including (1) alcohol pharmacology, (2) alcohol responsivity and tolerance, (3) adolescent neurodevelopment, (4) cholinergic system and neurocircuitry, (5) microglial function, and (6) Alzheimer’s disease. A major focus of the laboratory is elucidation of neuroimmune and epigenetic mechanisms underlying adolescent binge alcohol-induced disruption of basal forebrain cholinergic neurocircuitry in adulthood. A second major focus of the laboratory is investigation of lasting adolescent binge drinking-induced neuroimmune priming as a novel etiological factor contributing to the onset and progression of basal forebrain neuropathology in Alzheimer’s disease. Our laboratory combines ex vivo and in vivo rodent models of alcohol abuse and Alzheimer’s disease with innovative molecular techniques.

Prim, Courtney

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Neurobiology

“I am interested in researching the cellular and molecular pathogenesis of neurological disorders and diseases. I am particularly interested in the role of astrocytes during normal brain development, as well as in neurological disorder and disease.”

Descant, Katherine

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Neurobiology

“I’m interested in pursuing neuroscience research that explores the connection between neural circuit development and modulation with behavior. Specifically, what happens when these circuits are misregulated as a lens for better understanding neuropsychiatric and neurodevelopmental disorders.”