Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Clapp, Phil
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Immunology, Physiology, Toxicology, Translational Medicine

My lab in the UNC CEMALB uses translational in vitro and clinical in vivo approaches to investigate how inhaled xenobiotics modify respiratory innate immune responses in people with and without existing lung disease. A central component of my research is the integration of biomedical engineering, additive manufacturing, and advanced cell culture methods to evaluate the health effects of new and emerging tobacco products such as e-cigarettes. I believe the best research is achieved through collaboration across disciplines and welcome interested trainees to contact me to learn more about my lab.

Ferguson, Kelly
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Toxicology, Translational Medicine

The Perinatal and Early Life Epidemiology Group conducts research on how maternal exposure to chemicals impacts pregnancy and the development of the fetus and child. We also investigate biological mechanisms of action — such as inflammation, oxidative stress, and endocrine disruption — that connect chemical exposures to adverse birth outcomes.

Moran, Timothy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Immunology, Toxicology, Translational Medicine

Our research focuses on how environmental exposures impact the development of allergic diseases including asthma and food allergy. We are specifically interested in how exposure to environmental pollutants and immunostimulatory molecules (adjuvants) influence allergic sensitization. The goals of our laboratory are to: (1) define the key environmental adjuvants within the indoor exposome that promote allergic sensitization; (2) characterize the molecular mechanisms by which environmental adjuvants and pollutants condition lung antigen presenting cells to induce allergic immune responses; and (3) identify biomarkers of environmental adjuvant exposure that are associated with increased risk for allergic sensitization in children. Through these research endeavors, we hope to identify potential therapeutic targets for environment-mediated allergic diseases, as well as environmental interventions to mitigate the risk for allergic disease development.

Wallet, Shannon

EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Oral & Craniofacial Biomedicine

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Immunology, Pathogenesis & Infection, Physiology, Toxicology, Translational Medicine

My research interests are focused on mechanisms associated with altered innate immune functions, which lead to dysregulated adaptive immunity. Currently my research program has three major arms integrated through with a central philosophy. Specifically, our laboratory focuses on the contribution of epithelial cell biology and signaling to innate and adaptive immune homeostasis and dysfunction. We study the contribution of what I term ‘epithelial cell innate immune (dys)function’ to three major disease conditions: pancreatic cancer, type 1 diabetes (autoimmunity), and periodontal disease (autoinflammation). While appearing to be a diverse research program, we have found that many of the mechanisms and systems in play are surprisingly (or maybe not so surprisingly) similar allowing for rapid translation of our findings. Importantly, previous investigations into the role of epithelial cells in immunobiology have been hindered by a lack of robust primary cell culture techniques, which our laboratory has been able to overcome using both animal and human tissues. Thus, using our novel and unique tools we are able to evaluate our findings in the human conditions, again making translation of our findings that much more feasible. In addition to my primary research objectives, my collaborative research programs, have allowed me to be involved, at some level, in investigating the basic biology of health, multiple autoimmune conditions, autoinflammation, sepsis, and exercise induced inflammation I have been blessed with the opportunities to couple my passions and expertise with that of others to bring together multiple research communities with the goal of advancing human health and hope to be able to continue to do so for years to come.

Rebuli, Meghan E.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Toxicology, Translational Medicine

Research in my lab focuses on investigating sex specific effects of air pollutants and new and emerging tobacco products on respiratory immune health. Specifically, the Rebuli lab is examining how the interaction of sex (genetic and hormonal) and toxicant exposure can alter respiratory health. As the majority of research has been historically conducted in men, male animals, or male-derived cell culture models, there is a paucity of information on female respiratory health and sex differences in the effects of toxicant exposure. We are working to fill this knowledge gap by better understanding the role of genetic and hormonal sex on respiratory health. This is particularly important in understanding the development of sex-biased diseases, where men or women are more susceptible to disease development after environmental exposures, such viral infection, asthma, and chronic obstructive pulmonary disease (COPD). We are interested in toxicants such as ozone, wood smoke, cigarette smoke, and e-cigarette aerosols. We investigate effects at both the individual and population level by using clinical (observational clinical studies and prospective exposure trials) and translational (in vitro and ex vivo cell culture) models of the respiratory immune system.

Rizvi, Imran
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Drug Delivery, Molecular Biology, Nanomedicine, Pharmacology, Toxicology, Translational Medicine

Dr. Rizvi’s expertise is in imaging and therapeutic applications of light, bioengineered 3D models and animal models for cancer, and targeted drug delivery for inhibition of molecular survival pathways in tumors. His K99/R00 (NCI) develops photodynamic therapy (PDT)-based combinations against molecular pathways that are altered by fluid stress in ovarian cancer. He has co-authored 46 peer-reviewed publications and 5 book chapters with a focus on PDT, biomedical optics, and molecular targeting in cancer.

Chorley, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Genomics, Molecular Biology, Systems Biology, Toxicology

The long-term goal of my research is to incorporate ‘omic (genomic, epigenomic, proteomic, etc.) measurements into environmental human health hazard identification, prioritization and risk assessment using a quantitative and interpretable biological systems framework. Thus, short-term goals have been to develop the molecular tools to investigate key biological events, and measurable biomarkers linked to those events, related to important disease processes that are impacted by environmental chemical exposures, such as liver and lung toxicity.  We have focused recent efforts on early-in-life genomic and epigenetic alterations and linkages to latent adverse outcome susceptibility due to commons exposures, genetics, and pre-existing conditions. Our laboratory uses cutting edge techniques such as gene editing tools including CRISPR-based methods; next generation nucleic acid-based sequencing to probe the genome and epigenome; advance, high-throughput microscopy; targeted RNA, DNA, and non-coding RNA measurements such as digital drop PCR and Fireplex; and advanced in vitro models.

Williams, Carmen J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Developmental Biology, Toxicology, Translational Medicine

Reproductive biology of early mammalian embryogenesis including gametogenesis, fertilization, and preimplantation embryo development. Effects of environmental disrupting chemicals on female reproductive tract development and function, with a focus on epigenetic alterations.

Tong, Haiyan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cardiovascular Biology, Cell Signaling, Physiology, Toxicology, Translational Medicine

Research in my laboratory focuses on the cardiovascular effects of air pollution and other environmental pollutants in human, animal, and in vitro models, as well as the dietary interventional strategies to mitigate the adverse health effects of air pollution exposure. We are currently conducting two clinical studies to investigate the cardiopulmonary effects of air pollution exposure, and to determine whether dietary omega-3 fatty acids can mitigate the air pollution-induced health effects in human volunteers. These studies provide good training opportunities for students who are interested in training in clinical and translational toxicology research.

Maile, Robert
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Toxicology

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Pathology, Toxicology, Translational Medicine

An overwhelming number of burn patients die from wound infection and sepsis. Our laboratory, along with Dr Bruce Cairns, investigates translational immune mechanisms within mouse models and burn patients. Focuses in the lab include 1) investigation of innate molecule control of both the innate and adaptive immune systems after burn injury, 2) role of innate signaling to Damage Associated Molecular Patterns in Immune Dysfunction after burn / inhalational injury 3) using NRF2/KEAP1-Targeted Therapy to Prevent Pneumonitis and Immune Dysfunction After Radiation or Combined Burn-Radiation Injury and 4) Investigating sex-specific disparities in Immune Dysfunction