PhD Program: Biology
Name | PhD Program | Research Interest | Publications |
---|---|---|
Parker, Ben WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We study animal-microbe interactions. We’re particularly interested in how these associations evolve and the underlying molecular and immunological mechanisms. We blend genomics, microbiology, and experimental approaches, and we focus on insect model systems and their associated microbiomes. |
Yang, En WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The EnYang Lab explores interdisciplinary fields to unravel the intricate workings of neural networks within the brain, focusing on how they execute computations, foster imagination, and respond to emotional states. Using larval zebrafish as an animal model, the lab observes, decodes, and perturbs the entire neural networks at single-cell resolution during cognitive tasks. Through the integration of whole-brain imaging, brain-machine interface (BMI), Virtual Reality, optogenetic manipulation, deep learning, and other modern technologies, the lab aims to decipher cognitive abilities in the brain and translate findings into engineering solutions, potentially impacting fields like learning disorders and psychiatric management. |
Chen, Jiakun WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The goal of our research is to understand how astrocytes develop and how they interact with neural elements during nervous system formation, function, and maintenance. Our lab uses fruit fly Drosophila and zebrafish Danio rerio to explore fundamental aspects of astrocyte biology. We leverage the powerful genetics and unparalleled molecular toolsets in flies to uncover gene function, and we exploit the advanced live-imaging techniques in zebrafish to study astrocyte-neuron interactions in vivo. |
Matute, Daniel WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research program studies how species form. We use a combination of approaches that range from field biology, behavior, and computational biology. |
Gordon, Kacy PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Gordon lab is brand new to UNC, and studies stem cell and stem cell niche biology in the model organism C. elegans. The germ line stem cells make the gametes, which make the next generation of worms. These cells are therefore at the nexus of development, genetics, and evolution. We will be getting started with projects pertaining to evolutionary comparative gene expression in the stem cells and stem cell niche and niche development. The techniques we use include molecular biology, CRISPR/Cas9-mediated genome editing, worm genetics, and microscopy. |
Dowen, Rob WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Appropriate allocation of cellular lipid stores is paramount to maintaining organismal energy homeostasis. Dysregulation of these pathways can manifest in human metabolic syndromes, including cardiovascular disease, obesity, diabetes, and cancer. The goal of my lab is to elucidate the molecular mechanisms that govern the storage, metabolism, and intercellular transport of lipids; as well as understand how these circuits interface with other cellular homeostatic pathways (e.g., growth and aging). We utilize C. elegans as a model system to interrogate these evolutionarily conserved pathways, combining genetic approaches (forward and reverse genetic screens, CRISPR) with genomic methodologies (ChIP-Seq, mRNA-Seq, DNA-Seq) to identify new components and mechanisms of metabolic regulation. |
Ikonomidis, John S. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research focus pertains to vascular remodeling as it relates to the pathogenesis and progression of thoracic aortic aneurysms. Using murine and porcine models, as well as human aneurysm tissue samples, we study proteinase and signaling biology with a view towards defining novel modalities targets for diagnosis, tracking, risk stratification and non-surgical treatment of this devastating disease. |
Hige, Toshi WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Flexibility of the brain allows the same sensory cue to have very different meaning to the animal depending on past experience (i.e. learning and memory) or current context. Our goal is to understand this process at the levels of synaptic plasticity, neural circuit and behavior. Our model system is a simple brain of the fruit fly, Drosophila. We employ in vivo electrophysiology and two-photon calcium imaging together with genetic circuit manipulation. Taking advantage of this unique combination, we aim to find important circuit principles that are shared with vertebrate systems.
|
Goldstein, Bob WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We address fundamental issues in cell and developmental biology, issues such as how cells move to specific positions, how the orientations of cell divisions are determined, how the mitotic spindle is positioned in cells, and how cells respond to cell signaling – for example Wnt signaling, which is important in development and in cancer biology. We are committed to applying whatever methods are required to answer important questions. As a result, we use diverse methods, including methods of cell biology, developmental biology, forward and reverse genetics including RNAi, biochemistry, biophysics, mathematical and computational modeling and simulations, molecular biology, and live microscopy of cells and of the dynamic components of the cytoskeleton – microfilaments, microtubules, and motor proteins. Most experiments in the lab use C. elegans embryos, and we have also used Drosophila and Xenopus recently. C. elegans is valuable as a model system because of the possibility of combining the diverse techniques above to answer a wide array of interesting questions. We also have a long-term project to develop a new model system for studying how biological materials can survive extremes, using little-studied organisms called tardigrades. Rotating graduate students learn to master existing techniques, and students who join the lab typically grow their rotation projects into larger, long term projects, and/or develop creative, new projects. |
Duronio, Bob WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My lab studies how cell proliferation is controlled during animal development, with a focus on the genetic and epigenetic mechanisms that regulate DNA replication and gene expression throughout the cell cycle. Many of the genes and signaling pathways that we study are frequently mutated in human cancers. Our current research efforts are divided into three areas: 1) Plasticity of cell cycle control during development 2) Histone mRNA biosynthesis and nuclear body function 3) Epigenetic control of genome replication and function. |