Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Matute, Daniel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Computational Biology, Evolutionary Biology, Genetics, Genomics, Organismal Biology

My research program studies how species form. We use a combination of approaches that range from field biology, behavior, and computational biology.

Dickerson, Brad

EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Neuroscience

RESEARCH INTEREST
Behavior, Computational Biology, Neurobiology, Organismal Biology, Physiology

Research in my lab focuses on how motor output is structured by precise sensory input. To do so, we study the flight control circuitry of the fruit fly, Drosophila melanogaster. By studying these questions in Drosophila, we can leverage the powerful genetic toolkit available for the mapping, imaging, and manipulation of neural circuits. The lab directs its attention on structures that are unique to flies, known as the halteres, which act as dual-function gyroscopes that help structure the wingstroke. We take an integrative approach, combining in vivo imaging, muscle physiology, and behavior.
Gordon, Kacy

EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Evolutionary Biology, Genetics

The Gordon lab is brand new to UNC, and studies stem cell and stem cell niche biology in the model organism C. elegans. The germ line stem cells make the gametes, which make the next generation of worms. These cells are therefore at the nexus of development, genetics, and evolution. We will be getting started with projects pertaining to evolutionary comparative gene expression in the stem cells and stem cell niche and niche development. The techniques we use include molecular biology, CRISPR/Cas9-mediated genome editing, worm genetics, and microscopy.

Dowen, Rob
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Computational Biology, Genetics, Genomics, Metabolism

Appropriate allocation of cellular lipid stores is paramount to maintaining organismal energy homeostasis. Dysregulation of these pathways can manifest in human metabolic syndromes, including cardiovascular disease, obesity, diabetes, and cancer. The goal of my lab is to elucidate the molecular mechanisms that govern the storage, metabolism, and intercellular transport of lipids; as well as understand how these circuits interface with other cellular homeostatic pathways (e.g., growth and aging). We utilize C. elegans as a model system to interrogate these evolutionarily conserved pathways, combining genetic approaches (forward and reverse genetic screens, CRISPR) with genomic methodologies (ChIP-Seq, mRNA-Seq, DNA-Seq) to identify new components and mechanisms of metabolic regulation.

Ikonomidis, John S.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology

RESEARCH INTEREST
Biochemistry, Cardiovascular Biology, Cell Biology, Cell Signaling, Translational Medicine

My research focus pertains to vascular remodeling as it relates to the pathogenesis and progression of thoracic aortic aneurysms. Using murine and porcine models, as well as human aneurysm tissue samples, we study proteinase and signaling biology with a view towards defining novel modalities targets for diagnosis, tracking, risk stratification and non-surgical treatment of this devastating disease.

Hige, Toshi
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Behavior, Genetics, Neurobiology, Physiology

Flexibility of the brain allows the same sensory cue to have very different meaning to the animal depending on past experience (i.e. learning and memory) or current context. Our goal is to understand this process at the levels of synaptic plasticity, neural circuit and behavior. Our model system is a simple brain of the fruit fly, Drosophila. We employ in vivo electrophysiology and two-photon calcium imaging together with genetic circuit manipulation. Taking advantage of this unique combination, we aim to find important circuit principles that are shared with vertebrate systems.

 

Goldstein, Bob
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Biophysics, Cell Biology, Developmental Biology, Genetics, Molecular Biology

We address fundamental issues in cell and developmental biology, issues such as how cells move to specific positions, how the orientations of cell divisions are determined, how the mitotic spindle is positioned in cells, and how cells respond to cell signaling – for example Wnt signaling, which is important in development and in cancer biology. We are committed to applying whatever methods are required to answer important questions. As a result, we use diverse methods, including methods of cell biology, developmental biology, forward and reverse genetics including RNAi, biochemistry, biophysics, mathematical and computational modeling and simulations, molecular biology, and live microscopy of cells and of the dynamic components of the cytoskeleton – microfilaments, microtubules, and motor proteins. Most experiments in the lab use C. elegans embryos, and we have also used Drosophila and Xenopus recently. C. elegans is valuable as a model system because of the possibility of combining the diverse techniques above to answer a wide array of interesting questions. We also have a project underway to develop a new model system for studying how cellular and developmental mechanisms evolve, using little-studied organisms called water bears. Rotating graduate students learn to master existing techniques, and students who join the lab typically grow their rotation projects into larger, long term projects, and/or develop creative, new projects.

Duronio, Bob
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Developmental Biology, Genetics, Genomics, Molecular Biology

My lab studies how cell proliferation is controlled during animal development, with a focus on the genetic and epigenetic mechanisms that regulate DNA replication and gene expression throughout the cell cycle. Many of the genes and signaling pathways that we study are frequently mutated in human cancers. Our current research efforts are divided into three areas:  1) Plasticity of cell cycle control during development  2) Histone mRNA biosynthesis and nuclear body function  3) Epigenetic control of genome replication and function.

Dangl, Jeff
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Evolutionary Biology, Genetics, Genomics, Pathogenesis & Infection, Plant Biology

We use the premier model plant species, Arabidopsis thaliana, and real world plant pathogens like the bacteria Pseudomonas syringae and the oomycete Hyaloperonospora parasitica to understand the molecular nature of the plant immune system, the diversity of pathogen virulence systems, and the evolutionary mechanisms that influence plant-pathogen interactions. All of our study organisms are sequenced, making the tools of genomics accessible.

Copenhaver, Gregory P.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Genetics, Genomics, Molecular Biology, Plant Biology

The primary research area my lab is the regulation of meiotic recombination at the genomic level in higher eukaryotes. Genomic instability and disease states, including cancer, can occur if the cell fails to properly regulate recombination. We have created novel tools that give our lab an unparalleled ability to find mutants in genes that control recombination. We use a combination of genetics, bioinformatics, computational biology, cell biology and genomics in our investigations. A second research area in the lab is the role of centromere DNA in chromosome biology. We welcome undergraduates, graduate students, postdoctoral fellows and visiting scientists to join our team.