Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Davis, Harris

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Biophysics, Computational Biology, Pharmacology

“My goal for my PhD is to build mathematical, biophysical models of G-protein and GPCR pharmacology. I want to use molecular dynamics and machine learning to inform ODE and PDE models that are testable experimentally. Hopefully, this will lead to more robust predictions of the effects of G-protein targeting drugs. I’m specifically interested in modeling allostery and biased signaling, especially at and downstream of the human serotonin and opioid receptors.”

Circo, Bella

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Behavior, Cell Signaling, Pharmacology

“Focusing within the field of Neuroscience I am interested in: Substance Use Disorders, Behavior, Optogenetics, Chemogenetics, Rodent Model, Self-Administration paradigm.”

Cano, Patricio

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Pharmacology, Stem Cells, Virology

“I am interested in developing personalized therapeutics, including those related to utilizing pharmacogenomics, antivirals, and/or immunotherapies. I hope to utilize my background in microbiology and immunology to drive myself forward and shape the way I approach these interests.”

Baucom, Conner

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Chemical Biology, Drug Discovery, Pharmacology

“I’m interested in developing/improving drug discovery/design methodologies that are derived from a physical/theoretical chemistry perspective. In addition to the application to drug design, I am very interested in understanding the physical laws and mechanisms that govern biochemical activity and its external modulation through drugs.”

Balasubramanian, Kavya

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cell Biology, Neurobiology, Pharmacology

“Broadly, I am interested in the neurobiological mechanisms that differentiate normal and dysregulated circuit function in neurological conditions like substance use disorders and neurodegenerative disease. Specifically, I would like to better understand how intrinsic factors and environmental stressors interact to drive pathological processes in the above conditions.”

Pruitt, Kevin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Cancer Genomics, Cell Biology, Cell Signaling, Epigenetics & Chromatin Biology, Immunology, Pharmacology

Pruitt lab research involves 3 broad areas. Interest in the first area (cancer epigenetics) stemmed from discoveries made during postdoctoral training assessing how tumor progression disrupts epigenetic mechanisms of control. The second area (Wnt pathway regulation) was the result of early screens as an Assistant Professor at LSU Health Sciences Center. We uncovered novel regulators of oncogenic Wnt signaling and published the first observation that epigenetic enzymes regulate a critical mediator of Wnt signaling (Dishevelled). The third project involves elucidating mechanisms of aromatase regulation which emerged from the obsession of early trainees in the lab with understanding mechanisms cancer-associated estrogen biosynthesis. Within the context of these three projects, I have mentored and guided multiple trainees at every level over the course of 17 years.

Miao, Yinglong
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Aging/Alzheimer's, Biochemistry, Biophysics, Cardiovascular Disease, Computational Biology, Drug Discovery, Pharmacology, Signal Transduction

Our research is focused on the development of novel theoretical and computational methods and AI techniques, which greatly enhance computer simulations and facilitate simulation analysis, and the application of these methods, making unprecedented contributions to biomolecular modeling and drug discovery. In collaboration with leading experimental groups, we combine complementary simulations and experiments to uncover functional mechanisms and design drugs of important biomolecules, including G-protein-coupled receptors (GPCRs), membrane-embedded proteases, RNA-binding proteins, and RNA. At the interface of computational biology, chemistry, biophysics, bioinformatics and pharmacology, our research aims to address three major topics: (i) development of biomolecular enhanced sampling and AI techniques, (ii) multiscale computational modeling of critical cellular signaling pathways, and (iii) AI-driven drug discovery of medically important proteins and RNA for treatments of neurological disorders, heart failure and cancers.

Leiderman, Karin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology

RESEARCH INTEREST
Biophysics, Cardiovascular Biology, Cell Signaling, Computational Biology, Enzymology, Hematology, Pharmacology, Quantitative Biology, Systems Biology

I am a mathematical biologist interested in the biochemical and biophysical aspects of blood clotting and emergent behavior in biological fluid-structure interaction problems. I especially love mathematical modeling, where creativity, biological knowledge, and mathematical insight meet. My goal is to use mathematical and computational modeling as a tool to learn something new about a biological system, not just to simply match model output to experimental data. My research paradigm includes an integration of mathematical and experimental approaches, together with statistical analyses and inference, to determine mechanisms underlying complex biological phenomena. This paradigm culminates in the contextualization of my findings to both the mathematical and biological communities. My research program is focused mainly on studying the influence of biochemical and biophysical mechanisms on blood coagulation, clot formation, and bleeding.

Yates, Melinda

EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Cancer Genomics, Cancer Preclinical Models, Cancer Signaling & Biochemistry, Pharmacology, Toxicology, Translational Medicine

Our translational research lab is focused on the earliest changes that occur in the uterus (endometrium) during cancer development related to obesity and hereditary DNA repair defects. We use preclinical tools (rodents, organoids, and cell lines) to probe mechanisms of endometrial cancer pathogenesis, in parallel with human tissue studies. Our overall goal is to understand how environmental factors, including obesity, hormones, and other exposures, influence endometrial cancer development and disparities so that we can use pharmacologic agents to prevent or reverse cancer development.

Vetreno, Ryan

EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Addiction/Alcohol Research, Aging/Alzheimer's, Behavior, Biochemistry, Brain Development, Developmental Biology, Disease, Epigenetics & Chromatin Biology, Immunology, Microbiome, Molecular Biology, Molecular Mechanisms of Disease, Neurobiology, Neurodevelopmental Disorders, Neuropharmacology, Pathology, Pharmacology, Regenerative Medicine

My research interests involve investigation of proinflammatory neuroimmune and epigenetic mechanisms in animal models of developmental neurobiology and neurodegeneration, including (1) alcohol pharmacology, (2) alcohol responsivity and tolerance, (3) adolescent neurodevelopment, (4) cholinergic system and neurocircuitry, (5) microglial function, and (6) Alzheimer’s disease. A major focus of the laboratory is elucidation of neuroimmune and epigenetic mechanisms underlying adolescent binge alcohol-induced disruption of basal forebrain cholinergic neurocircuitry in adulthood. A second major focus of the laboratory is investigation of lasting adolescent binge drinking-induced neuroimmune priming as a novel etiological factor contributing to the onset and progression of basal forebrain neuropathology in Alzheimer’s disease. Our laboratory combines ex vivo and in vivo rodent models of alcohol abuse and Alzheimer’s disease with innovative molecular techniques.