Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Mock, Jason
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Physiology, Translational Medicine

Our research interests focus on investigating the reparative processes critical to the resolution of acute lung injury. Acute events such as pneumonia, inhalational injury, trauma, or sepsis often damage the lung, impeding its primary function, gas exchange. The clinical syndrome these events can lead to is termed Acute Respiratory Distress Syndrome (ARDS). ARDS is a common pulmonary disease often seen and treated in intensive care units. Despite decades of research into the pathogenesis underlying the development of ARDS, mortality remains high. Our laboratory has built upon exciting observations by our group and others on the importance of how the lung repairs after injury. One type of white blood cell, the Foxp3+ regulatory T cell (Treg), appears essential in resolving ARDS in experimental models of lung injury–through modulating immune responses and enhancing alveolar epithelial proliferation and tissue repair. Importantly, Tregs are present in patients with ARDS, and our lab has found that subsets of Tregs may play a role in recovery from ARDS.

Christoffel, Dan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Physiology, Translational Medicine

Dr. Christoffel aims to understand how chronic exposure to particular stimuli (i.e. stress, food, drugs) alters the functioning of specific neural circuits and investigates the mechanisms that regulate these experience-dependent changes. Current studies focus on 1) how experience-dependent plasticity in the nucleus accumbens regulates reward processing, with a focus on the consumption of palatable foods and stress modulation of food intake, and 2) examine the regulatory role of neuromodulators in hedonic feeding.

The ultimate goal of the Christoffel Lab’s research is to understand how adaptive changes in brain function occur and how this can lead to the development of psychiatric disorders. We employ cutting-edge technologies to understand the complex interactions of multiple neural systems that allow us to adapt to our environment and regulate motivated behavior.

Bullins, Reagan

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Neurobiology, Physiology

Chartampila, Liza

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Developmental Biology, Neurobiology, Physiology

Rabjohns, Emily

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Pathology, Physiology, Translational Medicine

Clapp, Phil
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Immunology, Physiology, Toxicology, Translational Medicine

My lab in the UNC CEMALB uses translational in vitro and clinical in vivo approaches to investigate how inhaled xenobiotics modify respiratory innate immune responses in people with and without existing lung disease. A central component of my research is the integration of biomedical engineering, additive manufacturing, and advanced cell culture methods to evaluate the health effects of new and emerging tobacco products such as e-cigarettes. I believe the best research is achieved through collaboration across disciplines and welcome interested trainees to contact me to learn more about my lab.

Walsh, Jessica
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Behavior, Neurobiology, Pharmacology, Physiology, Translational Medicine

Social behavior is composed of a variety of distinct forms of interactions and is fundamental to survival. Several neural circuits must act in concert to allow for such complex behavior to occur and perturbations, either genetic and/or environmental, underlie many psychiatric and neurodevelopment disorders. The Walsh lab focuses on gaining an improved understanding of the biological basis of behavior using a multi-level approach to elucidate the molecular and circuit mechanisms underlying motivated social behavior. The goal of our research is to uncover how neural systems govern social interactions and what alterations occur in disease states to inform the development of novel therapeutics or treatment strategies.

One of the major focuses of the Walsh lab is on understanding how genetic mutations, as well as experience, lead to circuit adaptations that govern impaired behavior seen in mouse models of autism spectrum disorders (ASD). Our systems level analysis includes: 1) modeling these disorders with well described genetic markers, 2) defining causal relationships between activity within discrete anatomical structures in the brain that are critical to the physiology of the symptom under investigation (e.g. sociability), 3) performing deep characterization of the physiological profiles of these circuits and using that information to target specific receptors or molecules that may not have been considered for the treatment of specific ASD symptoms.

Wallet, Shannon

EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Oral & Craniofacial Biomedicine

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Immunology, Pathogenesis & Infection, Physiology, Toxicology, Translational Medicine

My research interests are focused on mechanisms associated with altered innate immune functions, which lead to dysregulated adaptive immunity. Currently my research program has three major arms integrated through with a central philosophy. Specifically, our laboratory focuses on the contribution of epithelial cell biology and signaling to innate and adaptive immune homeostasis and dysfunction. We study the contribution of what I term ‘epithelial cell innate immune (dys)function’ to three major disease conditions: pancreatic cancer, type 1 diabetes (autoimmunity), and periodontal disease (autoinflammation). While appearing to be a diverse research program, we have found that many of the mechanisms and systems in play are surprisingly (or maybe not so surprisingly) similar allowing for rapid translation of our findings. Importantly, previous investigations into the role of epithelial cells in immunobiology have been hindered by a lack of robust primary cell culture techniques, which our laboratory has been able to overcome using both animal and human tissues. Thus, using our novel and unique tools we are able to evaluate our findings in the human conditions, again making translation of our findings that much more feasible. In addition to my primary research objectives, my collaborative research programs, have allowed me to be involved, at some level, in investigating the basic biology of health, multiple autoimmune conditions, autoinflammation, sepsis, and exercise induced inflammation I have been blessed with the opportunities to couple my passions and expertise with that of others to bring together multiple research communities with the goal of advancing human health and hope to be able to continue to do so for years to come.

Button, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Biochemistry, Biomaterials, Biophysics, Cell Biology, Cell Signaling, Drug Delivery, Drug Discovery, Nanomedicine, Pathology, Physiology, Systems Biology, Translational Medicine

The Button lab in the Department of Biochemistry and Biophysics is part of the Marsico Lung Institute. Our lab is actively involved in projects that are designed to define the pathogenesis of muco-obstructive pulmonary disorders and to identify therapies that could be used to improve the quality of life in persons afflicted by these diseases. In particular, our research works to understand the biochemical and biophysical properties of mucin biopolymers, which give airway mucus its characteristic gel-like properties, and how they are altered in diseases such as Asthma, COPD, and cystic fibrosis.

Dickerson, Brad

EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Neuroscience

RESEARCH INTEREST
Behavior, Computational Biology, Neurobiology, Organismal Biology, Physiology

Research in my lab focuses on how motor output is structured by precise sensory input. To do so, we study the flight control circuitry of the fruit fly, Drosophila melanogaster. By studying these questions in Drosophila, we can leverage the powerful genetic toolkit available for the mapping, imaging, and manipulation of neural circuits. The lab directs its attention on structures that are unique to flies, known as the halteres, which act as dual-function gyroscopes that help structure the wingstroke. We take an integrative approach, combining in vivo imaging, muscle physiology, and behavior.