Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Corteselli, Elizabeth

EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Molecular Mechanisms of Disease, Pulmonary Research, Toxicology, Translational Medicine

Dr. Corteselli’s research aims to uncover the mechanisms by which exposure to air pollutants causes lung injury. Her lab uses advanced in vitro models, including lung organoids and precision cut lung slices, to investigate the effects of inhaled toxicants on airway epithelial cell function, with a focus on redox homeostasis and signaling.

Pruitt, Kevin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Cancer Genomics, Cell Biology, Cell Signaling, Epigenetics & Chromatin Biology, Immunology, Pharmacology

Pruitt lab research involves 3 broad areas. Interest in the first area (cancer epigenetics) stemmed from discoveries made during postdoctoral training assessing how tumor progression disrupts epigenetic mechanisms of control. The second area (Wnt pathway regulation) was the result of early screens as an Assistant Professor at LSU Health Sciences Center. We uncovered novel regulators of oncogenic Wnt signaling and published the first observation that epigenetic enzymes regulate a critical mediator of Wnt signaling (Dishevelled). The third project involves elucidating mechanisms of aromatase regulation which emerged from the obsession of early trainees in the lab with understanding mechanisms cancer-associated estrogen biosynthesis. Within the context of these three projects, I have mentored and guided multiple trainees at every level over the course of 17 years.

Leiderman, Karin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology

RESEARCH INTEREST
Biophysics, Cardiovascular Biology, Cell Signaling, Computational Biology, Enzymology, Hematology, Pharmacology, Quantitative Biology, Systems Biology

I am a mathematical biologist interested in the biochemical and biophysical aspects of blood clotting and emergent behavior in biological fluid-structure interaction problems. I especially love mathematical modeling, where creativity, biological knowledge, and mathematical insight meet. My goal is to use mathematical and computational modeling as a tool to learn something new about a biological system, not just to simply match model output to experimental data. My research paradigm includes an integration of mathematical and experimental approaches, together with statistical analyses and inference, to determine mechanisms underlying complex biological phenomena. This paradigm culminates in the contextualization of my findings to both the mathematical and biological communities. My research program is focused mainly on studying the influence of biochemical and biophysical mechanisms on blood coagulation, clot formation, and bleeding.

Uchenna, Ikenna

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cell Signaling, Drug Discovery, Translational Medicine

“I am interested in understanding the mechanism of dysregulated signaling in disease, particularly, cancer and cardiovascular disease. I am also interested in translating my findings to help advance clinical practice and therapeutic innovations in this field. “

Roetcisoender, Jake

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cell Biology, Cell Signaling, Physiology

“I’m interested in doing research in cell biology, specifically in signaling pathways and cellular organization. I’m fascinated by organellar interactions and deciphering how this interplay along with extracellular signals shape cells in different pathologies.”

Tart, Seth

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cell Biology, Cell Signaling, Neurobiology

“I am interested in exploring the role of glial cells in neuroinflammation and neurodegenerative diseases. Additionally, I am interested in how glial cells influence neural circuit formation and synaptic plasticity. Finally, I aim to undercover novel cellular and molecular targets that can be utilized to treat or prevent various CNS diseases.”

Xi, Gang
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Autoimmune Disorders, Biochemistry, Cell Biology, Cell Signaling, Diabetes, Physiology, Signal Transduction, Translational Medicine

My research focuses on signal transduction, proteins posttranslational modification, and protein/protein interaction under varieties of stress/disease conditions. One of my major research areas is vascular smooth muscle signal transduction under hyperglycemic and oxidative stress conditions. Most recently, regulation of vascular smooth muscle cells phenotypic switch under hyperglycemic/uremic conditions was funded by NIH. In addition, I investigate autoantigens that are responsible for autoimmune diseases, such as MCD/FSGS, which make the precise diagnosis and individualized treatment plan possible.

Edwards, Whitney

EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cardiovascular Biology, Cardiovascular Disease, Cell Biology, Cell Signaling, Developmental Biology, Developmental Disorders, Disease, Genetic Basis of Disease, Metabolism, Molecular Biology, Molecular Mechanisms of Disease

Our lab aims to identify the fundamental molecular mechanisms underlying heart development and congenital heart disease. Our multifaceted approach includes primary cardiac cell culture, genetic mouse models, biochemical/molecular studies, and transcriptomics. Additionally, we employ proteomics-based methods to investigate 1) protein expression dynamics, 2) protein interaction networks, and 3) post-translational modifications (PTMs) in heart development. Current research projects focus on investigating the function of two essential PTMs in cardiogenesis: protein prenylation and palmitoylation.

Thurlow, Lance

EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Cell Signaling, Immunology, Metabolism, Pathogenesis & Infection

By 2035, more than 500 million people worldwide will be diagnosed with diabetes. Individuals with diabetes are prone to frequent and invasive infections that commonly manifest as skin and soft tissue infections (SSTIs). Staphylococcus aureus is the most commonly isolated pathogen from diabetic SSTI. S. aureus is a problematic pathogen that is responsible for tens of thousands of invasive infections and deaths annually in the US. Most S. aureus infections manifest as skin and soft tissue infections (SSTIs) that are usually self-resolving. However, in patients with comorbidities, particularly diabetes, S. aureus SSTIs can disseminate resulting in systemic disease including osteomyelitis, endocarditis and sepsis. The goal of my research is to understand the complex interactions between bacterial pathogens and the host innate immune response with focus on S. aureus and invasive infections associated with diabetes. My research is roughly divided into two project areas in order to understand the contributions of the pathogen and the host response to invasive infections associated with diabetes. Project 1: Defining mechanisms of immune suppression in diabetic infections. Project 2: Determine the role of bacterial metabolism in virulence potential and pathogenesis.

Freeman, Ronit
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Applied Physical Sciences, Biomedical Engineering, Chemistry

RESEARCH INTEREST
Biomaterials, Biophysics, Cancer Biology, Cell Biology, Cell Signaling, Drug Delivery, Drug Discovery, Nanomedicine, Translational Medicine

My lab focuses on developing bioinspired molecular constructs and material platforms that can mimic proteins and be programmed to respond to stimuli resulting from biomolecular recognition. Major efforts are directed to design peptide- and nucleic acid-based scaffolds or injectable nanostructures to create artificial extracellular matrices that can directly signal cells.