Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Hsueh, Ming-Feng
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Arthritis, Cell Biology, Gene Therapy, Molecular Mechanisms of Disease, RNA Biology, Regenerative Medicine, Translational Medicine

Dr. Hsueh’s research is at the forefront of translational musculoskeletal and aging biology, utilizing cutting-edge multi-omic technologies to pioneer new therapeutic strategies for regenerating damaged joint tissue, with a particular focus on osteoarthritis (OA). Our lab employs advanced in vitro cell culture and cartilage explant models to delve into the mechanisms driving OA pathogenesis and to evaluate the potential of novel drug therapies. A key area of our research investigates the role of noncoding RNAs in human musculoskeletal tissues. We aim to uncover the intricate signaling pathways and downstream gene networks influenced by these noncoding RNAs. Our ultimate goal is to harness this knowledge to enhance the body’s natural repair mechanisms, providing innovative solutions to combat the progression of OA and restore joint function

Chung, Kay
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Cancer Immunology, Cancer Signaling & Biochemistry, Chemical Biology, Computational Biology, Gene Therapy, Immunology, Molecular Biology, Signal Transduction, Systems Biology, Translational Medicine, Virology

The Chung lab is engineering immune cells, particularly T cells, to achieve maximum therapeutic efficacy at the right place and timing. We explore the crossroads of synthetic biology, immunology, and cancer biology. Particularly, we are employing protein engineering, next-gen sequencing, CRISPR screening, and bioinformatics to achieve our objectives:

(1) Combinatorial recipes of transcription factors for T cell programming.

(2) Technologies for temporal regulation and/or rewiring of tumor and immune signal activation (chemokine, nuclear, inhibitor receptors).

(3) Synthetic oncolytic virus for engineering tumor-T cell crosstalk.

Peng, Aimin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Oral & Craniofacial Biomedicine, Pathobiology & Translational Science

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cancer Preclinical Models, Cancer Signaling & Biochemistry, Cell Biology, Cell Cycle, Drug Discovery

Our overarching goal is to delineate how cells respond to cancer therapeutics that induce DNA damage, and, accordingly, to develop new strategies that overcome treatment resistance in cancer, including head and neck cancer. To achieve this goal, we study new mechanisms of the cell cycle and DNA repair using comprehensive experimental systems; we investigate the involvement of these mechanisms in oral cancer progression and resistance; and we develop new therapeutics using cellular, biochemical, and pharmacological approaches.

Cho, Rae
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Chemical Biology, Developmental Biology, Molecular Mechanisms of Disease, Systems Biology

We study proteases that induce rapid changes in cell morphology, behavior, and identity. We are particularly interested in ones that play a role in myotube formation, muscular dystrophies, rhabdomyosarcoma, and cachexia. Our model systems include C2C12 cells, primary myoblasts, patient-derived iPSCs, and zebrafish. In addition to standard cell biology approaches, we make use of chemical biology and advanced microscopy techniques. Ultimately, we seek to identify a combination of protease inhibitors/activators that can cure musculoskeletal diseases.

Chen, Jiakun
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Brain Development, Cell Biology, Developmental Biology, Genetics, Model Organisms, Neurobiology, Neurodevelopmental Disorders

The goal of our research is to understand how astrocytes develop and how they interact with neural elements during nervous system formation, function, and maintenance. Our lab uses fruit fly Drosophila and zebrafish Danio rerio to explore fundamental aspects of astrocyte biology. We leverage the powerful genetics and unparalleled molecular toolsets in flies to uncover gene function, and we exploit the advanced live-imaging techniques in zebrafish to study astrocyte-neuron interactions in vivo.

Azizoglu, Berfin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cardiovascular Biology, Cell Biology, Developmental Biology, Disease, Neurobiology, Regenerative Medicine, Stem Cells

Our lab studies body-wide control of organ growth and regeneration. The mammalian body is reticulated by blood vessels and neurons. How these networks communicate with organ cells to orchestrate local and body-wide decisions is obscure. We study this question with a focus on the mouse liver, the uniquely regenerative visceral organ. Current projects in the lab include 1-researching the role of a novel vascular progenitor network in liver regeneration, 2-determining the mechanisms of injury perception by liver innervation, and 3-in vitro assembly of reticulated, responsive liver tissue.

Khan, Shahzad
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Aging/Alzheimer's, Biochemistry, Cell Biology, Molecular Mechanisms of Disease, Neurobiology, Signal Transduction

Maintaining health and reducing disease-risk requires the brain to properly transduce signals across specialized regions and cell types. My lab studies neural signaling at the primary cilium, an antenna-like organelle that helps cells sense and respond to environmental cues. The function of primary cilia in the adult brain remains enigmatic. To probe cilia function, the lab will utilize mouse models, neural cultures, human brain samples, single-cell transcriptomics, proteomics, and microscopy. Ultimately, we aim to identify therapeutic targets for diseases like Alzheimer’s and Parkinson’s.

Xi, Gang
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Autoimmune Disorders, Biochemistry, Cell Biology, Cell Signaling, Diabetes, Physiology, Signal Transduction, Translational Medicine

My research focuses on signal transduction, proteins posttranslational modification, and protein/protein interaction under varieties of stress/disease conditions. One of my major research areas is vascular smooth muscle signal transduction under hyperglycemic and oxidative stress conditions. Most recently, regulation of vascular smooth muscle cells phenotypic switch under hyperglycemic/uremic conditions was funded by NIH. In addition, I investigate autoantigens that are responsible for autoimmune diseases, such as MCD/FSGS, which make the precise diagnosis and individualized treatment plan possible.

Okuda, Kenichi
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Molecular Biology, Molecular Mechanisms of Disease, Pulmonary Research, Respiratory Physiology & Infections

We inhale about 10,000 L of air to take oxygen into our bodies every day. Along with the inhaled air, numerous pathogens, chemical pollutants, and other irritants are inhaled, which could pose potential life-threatening risks to our lungs. However, our lungs are protected by mucociliary clearance (MCC), a critical innate defense mechanism that is important for maintaining lung health. Okuda lab’s overall research interest focuses on how the MCC system is regulated to maintain homeostasis in the lung and how it fails in muco-obstructive lung diseases, including cystic fibrosis (CF), asthma, and COPD. Our previous work successfully characterized the regional expression patterns of major airway secretory mucins, MUC5AC/MUC5B, and CFTR/ionocytes in normal and CF human airways. These investigations provide insight into the small airway region (< 2 mm in diameter) as a critical site for pathogenesis of muco-obstructive lung diseases. We have developed a microdissection technique for human small airways and established in vitro and explant small airway epithelial cell cultures. We have combined these culture systems with single-cell-based omics approaches and gene editing technologies to understand cellular biology and physiology of the human small airways. In response to the emergent situation caused by SARS-CoV-2 pandemic, Okuda lab has been also actively involved in COVID-19 research.

Hwang, Janice

EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Aging/Alzheimer's, Diabetes, Human Subjects Research, Medical Imaging, Metabolism, Neurobiology, Physiology, Translational Medicine

My group is interested in understanding the effects of obesity and diabetes on the brain, particularly related to cerebral function and energetics. We conduct physiology based, mechanistic human and rodent studies to investigate fundamental questions such as how does the brain sense various nutrients (sugar, fat, etc), how does metabolic disease, sleep, aging impact brain function and metabolism? Using classic human metabolic techniques including hyperinsulinemic and hyper/hypoglycemic clamps coupled with advanced neuroimaging modalities including 1H and 13C magnetic resonance spectroscopy, functional MRI, and PET-CT imaging, my group has shown that glucose transport capacity into the human brain can be modified by factors such as obesity and insulin resistance as well as hyperglycemia, hypoglycemia and glycemic variability. We also have interests in using novel human imaging modalities to understand how obesity and diabetes impact neuroinflammation and neurodegeneration.