Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Tamir, Tigist
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Nutrition

RESEARCH INTEREST
Biochemistry, Bioinformatics, Cancer Biology, Cancer Signaling & Biochemistry, Cell Signaling, Computational Biology, Metabolism, Molecular Biology, Molecular Mechanisms of Disease, Structural Biology, Systems Biology

Systems Metabolism and Signaling Lab

Oxidative stress, a byproduct of energy production essential for all living organisms, arises from an imbalance of reactive oxygen, nitrogen, and carbonyl species (ROS/RNS/RCS). These highly reactive molecules present a significant waste management challenge within cells. Through evolution, oxidative stress response (OSR) pathways have emerged as critical guardian of cellular homeostasis, adept at neutralizing potentially harmful reactive molecules. Dysregulation of OSR—whether due to insufficient or excessive capacity to resolve oxidative damage—is a hallmark of numerous human diseases. For example, cancer cells co-opt OSR pathways by rewiring signaling and metabolism which leads to the development of resistance to chemotherapy.

The Systems Metabolism and Signaling Lab (i.e. Tamir Lab) seeks to unravel the biochemical intricacies of how cells defend against oxidative stress by investigating the cell signaling-mediated regulation of metabolism. We aim to address fundamental questions about the biochemistry of OSR regulation, including:

  • How is information transferred across biomolecules, from the phosphoproteome to the metabolome?
  • What is the role of phosphorylation in shaping the structure and function of antioxidant enzymes?
  • Where do cell signaling pathways intersect with metabolism during OSR?
  • What are the signals driving dysregulated OSR in diseases?

To tackle these questions, we employ a multidisciplinary approach that integrates biochemistry, proteomics, metabolomics, molecular biology, and systems biology. Our work focuses on dissecting the regulatory networks governing OSR and identifying targetable pathways implicated in obesity and cancer. As a member of the Lineberger Comprehensive Cancer Center, Department of Nutrition, and Computational Medicine Program, we bridge molecular insights with systems-level understanding as we strive to illuminate novel and effective strategies for therapeutic interventions. The Systems Metabolism and Signaling Lab is committed to fostering a collaborative, creative, and diverse group that is invested in mutual growth.

Schrank, Travis

EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Biophysics, Cancer Biology, Cancer Signaling & Biochemistry, Chemical Biology, Computational Biology, Evolutionary Biology, Genetics, Genomics, Molecular Biology, Molecular Mechanisms of Disease, Translational Medicine, Virology

I am a surgeon-scientist specialized in head and neck cancers. My goal is to address translationalquestions with genomic data and bioinformatic methods, as well as benchtop experimentation. My clinical practice as a head and neck cancer surgeon also influences my research by helping me seek solutions to problems that will directly inform gaps in the current treatment protocols.

I have developed a strong interest in HPV genomics as well as HPV/host genome integrations, as these factors are intrinsically related to transcriptional diversity and patient outcomes in HPV-associated head and neck cancers. Our work has helped to demonstrate that a novel mechanism of HPV-mediated oncogenesis requiring NF-kB activation is present in nearly 50% of oropharyngeal tumors. In this vein, we are aggressively investigating the cellular interplay between the NF-kB pathway and persistent HPV infection, tumor radiation response, NRF2 signaling, and more.

Another outgrowth of this work has been investigating APOBEC3B and its non-canonical roles in regulating transcription. Our preliminary work has demonstrated that APOBEC3B has surprisingly strong transcriptional effects in HPV+ HNSCC cells and may promote oncogenesis and tumor maintenance by suppressing the innate immune response and influencing the HPV viral lifecycle.

Our group also have a strong interest in translational genomic studies. Our group is working to develop methods that will make gene expression-based biomarkers more successful in the clinic, as well as studying many aspects of genomic alterations that contribute to the development of squamous cell carcinomas.

Chung, Kay
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Cancer Immunology, Cancer Signaling & Biochemistry, Chemical Biology, Computational Biology, Gene Therapy, Immunology, Molecular Biology, Signal Transduction, Systems Biology, Translational Medicine, Virology

The Chung lab is engineering immune cells, particularly T cells, to achieve maximum therapeutic efficacy at the right place and timing. We explore the crossroads of synthetic biology, immunology, and cancer biology. Particularly, we are employing protein engineering, next-gen sequencing, CRISPR screening, and bioinformatics to achieve our objectives:

(1) Combinatorial recipes of transcription factors for T cell programming.

(2) Technologies for temporal regulation and/or rewiring of tumor and immune signal activation (chemokine, nuclear, inhibitor receptors).

(3) Synthetic oncolytic virus for engineering tumor-T cell crosstalk.

Peng, Aimin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Oral & Craniofacial Biomedicine, Pathobiology & Translational Science

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cancer Preclinical Models, Cancer Signaling & Biochemistry, Cell Biology, Cell Cycle, Drug Discovery

Our overarching goal is to delineate how cells respond to cancer therapeutics that induce DNA damage, and, accordingly, to develop new strategies that overcome treatment resistance in cancer, including head and neck cancer. To achieve this goal, we study new mechanisms of the cell cycle and DNA repair using comprehensive experimental systems; we investigate the involvement of these mechanisms in oral cancer progression and resistance; and we develop new therapeutics using cellular, biochemical, and pharmacological approaches.

Yates, Melinda

EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Cancer Genomics, Cancer Preclinical Models, Cancer Signaling & Biochemistry, Pharmacology, Toxicology, Translational Medicine

Our translational research lab is focused on the earliest changes that occur in the uterus (endometrium) during cancer development related to obesity and hereditary DNA repair defects. We use preclinical tools (rodents, organoids, and cell lines) to probe mechanisms of endometrial cancer pathogenesis, in parallel with human tissue studies. Our overall goal is to understand how environmental factors, including obesity, hormones, and other exposures, influence endometrial cancer development and disparities so that we can use pharmacologic agents to prevent or reverse cancer development.

Starbird, Chrystal

EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Signaling & Biochemistry, Molecular Mechanisms of Disease, Structural Biology

Our lab is interested in understanding the structural basis for activation of cell surface receptors. Using a combination of biochemistry, structural biology and cell biology, we seek to understand how the membrane environment and receptor:ligand interactions are modulated to generate the wide diversity of signaling regulated by these receptors, and how these interactions are modified in disease.