Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Parr, Jonathan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Evolutionary Biology, Genomics, Translational Medicine

Dr. Parr’s research focuses on the infectious diseases of poverty, with translational projects in the Democratic Republic of the Congo (DRC) and other sites. His research concentrates on the molecular epidemiology of malaria and the evolution of “diagnostic-resistant” strains of Plasmodium falciparum, in particular. As a founding member of a World Health Organization laboratory network, he collaborates with malaria control programs and ministries of health to support surveillance of these parasites across Africa. His recent work in Ethiopia uncovered genetic signatures of strong positive selection favoring parasites with pfhrp2 gene deletion and influenced malaria diagnostic and surveillance policy in the Horn of Africa.

Dr. Parr has recently expanded his research program to include studies of other diseases that disproportionately impact marginalized populations worldwide, including viral hepatitis and syphilis, and serves as the director of the genomics core for a large NIH-funded syphilis vaccine development project that spans sites in Malawi, Columbia, China, North Carolina, and the Czech Republic.

Rotating students can expect to undertake translational projects that apply cutting-edge methodologies to real-world problems. Examples include application of novel enrichment methods that enable pathogen genomic sequencing from challenging field samples, development of CRISPR-based diagnostic assays, and evaluation of how infectious disease interventions affect pathogen population structure. Trainees will interact with diverse investigators and benefit from a highly collegial training environment in the Infectious Disease Epidemiology and Ecology Lab.

Dr. Parr continues to attend on the infectious disease inpatient services at UNC Medical Center and, in response to the pandemic, co-directed the UNC division of infectious diseases’ inpatient COVID-19 services. He also serves as Associate Editor for global health for Healthcare: The Journal of Delivery Science and Innovation. Dr. Parr and his work have been featured in the New York Times, Washington Post, CNN, and other media outlets.

Maeda, Nobuyo

EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Nutrition, Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Genetics, Metabolism, Pathology, Translational Medicine

Overall goal of our research is to gain better knowledge of gene-gene and gene-environment interactions in common cardiovascular conditions in humans. We have been modifying mouse genome in such a way that resulting mice can model quantitative variations of a specific gene product that occur in human population. With these mice, we explore causes, mechanisms, and nutritional treatments of cardiovascular complications resulted from common conditions such as diabetes, lung infections, and pregnancy-associated hypertension. Current focus is on the oxidative stress and effects of vitamin B12 as antioxidant and beyond.

Ferris, Marty
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genetics, Genomics, Immunology, Pathogenesis & Infection, Systems Biology, Virology

In the Ferris lab, we use genetically diverse mouse strains to better understand the role of genetic variation in immune responses to a variety of insults. We then study these variants mechanistically. We also develop genetic and genomic datasets and resources to better identify genetic features associated with these immunological differences.

Smith, Keriayn
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Genetics, Genomics, Molecular Biology

We are interested in elucidating context-specific functions of products from single long noncoding RNA (lncRNA) loci. Since lncRNAs have been implicated in many cellular processes, it is critical to delineate specific roles for each lncRNA. Moreover, as they are increasingly associated with diseases including developmental disorders, degenerative diseases, and cancers, defining their functions will be an important precursor to their use as diagnostics and therapeutics. We specialize in adopting -omics approaches including genomics, transcriptomics and proteomics, combined with single molecule methods to study the intermolecular interactions – RNA-protein, RNA-RNA and RNA-chromatin that lncRNAs use to execute their functions in normal stem cells and cancer.

Rau, Christoph
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cardiovascular Biology, Computational Biology, Genetics, Genomics, Molecular Biology, Systems Biology, Translational Medicine

Heart failure is an increasingly prevalent cause of death world-wide, but the genetic and epigenetic underpinnings of this disease remain poorly understood. Our laboratory is interested in combining in vitro, in vivo and computational techniques to identify novel markers and predictors of a failing heart. In particular, we leverage mouse populations to perform systems-level analyses with a focus on co-expression network modeling and DNA methylation, following up in primary cell culture and CRISPR-engineered mouse lines to validate our candidate genes and identify potential molecular mechanisms of disease progression and amelioration.

Shpargel, Karl
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Developmental Biology, Genetics, Genomics, Organismal Biology

Our laboratory studies the coordination of histone-modifying enzymes in regulating chromatin structure, enhancer activation, and transcription. We utilize mouse genetics and cell culture model systems to study the mechanisms of enhancer activation in neural crest cell epigenetics, craniofacial development, and altered enhancer regulation in cancer. This is accomplished through a variety of techniques including mouse mutagenesis, fluorescent reporters to isolate primary cells of interest, low cell number genomics, and proteomic approaches.

Milner, Justin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Computational Biology, Genomics, Immunology, Pathogenesis & Infection, Translational Medicine

The overall focus of our lab is to develop new and exciting approaches for enhancing the efficacy of cancer immunotherapies. We utilize cutting-edge techniques to identify transcriptional and epigenetic regulators controlling T cell differentiation and function in the tumor microenvironment, and we seek to leverage this insight to reprogram or tailor the activity of T cells in cancer. Our group is also interested in understanding how to harness or manipulate T cell function to improve vaccines and immunotherapies for acute and chronic infections.

Matute, Daniel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Computational Biology, Evolutionary Biology, Genetics, Genomics, Organismal Biology

My research program studies how species form. We use a combination of approaches that range from field biology, behavior, and computational biology.

Raab, Jesse
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genetics, Genomics

We are interested in the links between epigenetics and gene regulation. Our primary focus is on understanding how changes to the composition of chromatin remodeling complexes are regulated, how their disruption affects their function, and contributes to disease. We focus on the SWI/SNF complex, which is mutated in 20% of all human tumors. This complex contains many variable subunits that can be assembled in combination to yield thousands of biochemically distinct complexes. We use a variety of computational and wet-lab techniques in cell culture and animal models to address these questions.

Gordon, Kacy

EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Evolutionary Biology, Genetics

The Gordon lab is brand new to UNC, and studies stem cell and stem cell niche biology in the model organism C. elegans. The germ line stem cells make the gametes, which make the next generation of worms. These cells are therefore at the nexus of development, genetics, and evolution. We will be getting started with projects pertaining to evolutionary comparative gene expression in the stem cells and stem cell niche and niche development. The techniques we use include molecular biology, CRISPR/Cas9-mediated genome editing, worm genetics, and microscopy.