Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Amelio, Antonio L.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Oral & Craniofacial Biomedicine, Pharmacology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Genetics, Genomics, Virology

Our laboratory is broadly interested in understanding the molecular mechanisms of transcriptional regulation by cell signaling pathways and the role of pathway cross-talk in cancer biology. In particular, the cAMP signaling cascade directs adaptive cellular responses to a variety of stress stimuli via a combination of acute affects arising from GS-protein coupled receptor (GPCR)-mediated activation of PKA and long-term affects resulting from transcriptional reprogramming directed by CREB and the CREB Regulated Transcription Coactivators (CTRCs). We are applying an interdisciplinary approach to study the consequences of aberrant activation of the cAMP/CREB/CRTC signal circuit on these adaptive responses and how cooperative signaling with other pathways promotes oncogenic processes in oral, head, and neck cancers.

Pylayeva-Gupta, Yuliya
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Immunology

The goal of my research is to define molecular mechanisms of immune cell co-option by cancer cells, with the hope of identifying novel targets for immune cell reprogramming. Central to our approach is analysis immune cell subtypes in KRas-driven models of pancreatic cancer. We use cell and animals models to study signals important for pro-tumorigenic activity of immune cells, as well as define role of physiologically relevant oncogenic mutations in driving these signals and enabling immune escape.

Nimchuk, Zachary
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Developmental Biology, Genetics, Molecular Biology, Plant Biology

Understanding how cells communicate and co-ordinate during development is a universal question in biology. My lab studies the cell to cell signaling systems that control plant stem cell production.  Plants contain discrete populations of self-renewing stem cells that give rise to the diverse differentiated cell types found throughout the plant.  Stem cell function is therefore ultimately responsible for the aesthetic and economic benefits plants provide us. Stem cell maintenance is controlled by overlapping receptor kinases that sense peptide ligands. Receptor kinase pathways also integrate with hormone signaling in a complex manner to modulate stem cell function.  My lab uses multiple approaches to dissect these networks including; genetics, genomics, CRISPR/Cas9 genome editing, live tissue imaging, and cell biological and biochemical methods.  This integrated approach allows us to gain an understanding of the different levels at which regulatory networks act and how they contribute to changes in form and function during evolution.

McCullough, Shaun D.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Toxicology

RESEARCH INTEREST
Cardiovascular Biology, Cell Signaling, Molecular Biology, Toxicology, Translational Medicine

Dr. McCullough’s lab takes a translational research approach that incorporates primary cell and organotypic in vitromodels with clinical research (controlled human exposures) to study the role of cellular and molecular mechanisms in mediating the local and systemic effects of exposure to inhaled chemicals.  His laboratory utilizes primary cell/organotypic in vitro models, live cell imaging of fluorescent biosensors, and both traditional and advanced molecular biology/biochemistry methods to characterize the relationship between redox dysfunction/oxidative stress, inflammation, cell signaling pathway activation, epigenetic changes, gene expression, and cell-specific functional outcomes.  In addition to identifying the mechanisms involved in the effects of toxic exposures, Dr. McCullough’s research also aims to identify biomarkers of toxic exposure effects, predicting susceptible populations, and identifying factors that can be used to mitigate adverse exposure outcomes.

Bressan, Michael
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Biophysics, Cardiovascular Biology, Cell Biology, Cell Signaling, Developmental Biology, Genetics, Microscopy, Molecular Biology, Molecular Medicine, Physiology, Stem Cells

How do networks of cells synchronize behaviors across differing spatial and temporal scales? This fundamental aspect of cellular dynamics is broadly relevant to understanding many biological systems in which the coherence of electrical or chemical signals is required for multicellular patterning or organ function. Our group’s primary research interests are related to understanding the cellular and microenvironmental conditions that are required to support the biorhythmic behavior of the system of cells that natively control heart rate, cardiac pacemaker cells. We utilize a variety of techniques including computational modeling, next generation sequencing, in vivo genetic manipulation, super-resolution imaging, and direct physiological recording to investigate the developmental processes that assemble the hearts pacemaking complex. The ultimate goals of these studies is to determine how the pacemaker cell lineage is patterned in the embryo, build strategies towards fabricating this cell type for therapeutic purposes, and identify vulnerabilities that may lead to pacemaker cell pathologies in humans.

Giudice, Jimena
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cardiovascular Biology, Cell Biology, Cell Signaling, Developmental Biology, Molecular Biology

During development transcriptional and posttranscriptional networks are coordinately regulated to drive organ maturation, tissue formation, and cell fate. Interestingly, more than 90% of the human genes undergo alternative splicing, a posttranscriptional mechanism that explains how one gene can give rise to multiple protein isoforms. Heart and skeletal muscle are two of the tissues where the most tissue specific splicing takes place raising the question of how developmental stage- and tissue-specific splicing influence protein function and how this regulation occurs. In my lab we are interested on two exciting aspects of this broad question: i) how alternative splicing of trafficking and membrane remodeling genes contributes to muscle development, structure, and function, ii) the coupling between epigenetics and alternative splicing in postnatal heart development.