Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Miller, Colette
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cardiovascular Biology, Cardiovascular Disease, Developmental Biology, Epigenetics & Chromatin Biology, Genomics, Metabolism, Molecular Biology, Molecular Mechanisms of Disease, Physiology, Pulmonary Research, Toxicology

Our research investigates the effects of air pollutants on maternal health, paternal health, and the health of their children. Through the use of genomics, metabolomics, and proteomics, we investigate the molecular underpinnings of diseases following exposures to pollutants during sensitive life stages. We have broad interests across many tissue systems and diseases relevant to fertility and pregnancy. Our work also explores the Developmental Origins of Health and Disease hypothesis, investigating risks of metabolic diseases in offspring following maternal or paternal exposures to pollutants.

Corteselli, Elizabeth

EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Molecular Mechanisms of Disease, Pulmonary Research, Toxicology, Translational Medicine

Dr. Corteselli’s research aims to uncover the mechanisms by which exposure to air pollutants causes lung injury. Her lab uses advanced in vitro models, including lung organoids and precision cut lung slices, to investigate the effects of inhaled toxicants on airway epithelial cell function, with a focus on redox homeostasis and signaling.

Okuda, Kenichi
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Molecular Biology, Molecular Mechanisms of Disease, Pulmonary Research, Respiratory Physiology & Infections

We inhale about 10,000 L of air to take oxygen into our bodies every day. Along with the inhaled air, numerous pathogens, chemical pollutants, and other irritants are inhaled, which could pose potential life-threatening risks to our lungs. However, our lungs are protected by mucociliary clearance (MCC), a critical innate defense mechanism that is important for maintaining lung health. Okuda lab’s overall research interest focuses on how the MCC system is regulated to maintain homeostasis in the lung and how it fails in muco-obstructive lung diseases, including cystic fibrosis (CF), asthma, and COPD. Our previous work successfully characterized the regional expression patterns of major airway secretory mucins, MUC5AC/MUC5B, and CFTR/ionocytes in normal and CF human airways. These investigations provide insight into the small airway region (< 2 mm in diameter) as a critical site for pathogenesis of muco-obstructive lung diseases. We have developed a microdissection technique for human small airways and established in vitro and explant small airway epithelial cell cultures. We have combined these culture systems with single-cell-based omics approaches and gene editing technologies to understand cellular biology and physiology of the human small airways. In response to the emergent situation caused by SARS-CoV-2 pandemic, Okuda lab has been also actively involved in COVID-19 research.

Chen, Gang
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Molecular Biology, Molecular Mechanisms of Disease, Pulmonary Research, Regenerative Medicine, Respiratory Physiology & Infections, Signal Transduction, Stem Cells

We use cutting edge technology to study pathogenesis of human pulmonary diseases including cystic fibrosis, Job’s syndrome, idiopathic pulmonary fibrosis by both human specimens, mouse genetic models, with a goal of finding the therapies. Recently, we developed a serial of lung epithelial-lineage tracing systems, providing the powerful tools for identify mechanisms of lung disease involved in post-acute sequelae SARS-CoV-2 infection, also known as “long COVID”, in collaboration with Dr. Ralph Baric’s Lab at UNC-CH.

Ehre, Camille
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Cell Biology, Microscopy/Imaging, Pathogenesis & Infection, Pulmonary Research, Respiratory Physiology & Infections

The Ehre laboratory studies the role of mucus in obstructive pulmonary diseases, such as asthma, and cystic fibrosis (CF), as well as in response to respiratory viruses (SARS-CoV-2 and RSV). Our research goal is to gain insights into the basic defects of airway mucus that lead to impaired mucociliary clearance and viral penetration. We use in vitro and in vivo models to study disease pathogenesis, test pharmacological agents and investigate how mucus obstruction and viral infection cause epithelial damage. In addition, we examine patient specimens to understand the role of inflammatory cytokines in disease severity. For these projects, we use integrative omics technologies (transcriptomics, digital spatial profiler, phenocycler) and high-resolution imaging (live, laser and scanning/transmission electron microscopy) to answer critical questions regarding mucus biology and airways response to inhaled pathogens and/or treatment.

Livraghi-Butrico, Alessandra
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Pathogenesis & Infection, Pulmonary Research, Respiratory Physiology & Infections, Translational Medicine

The Livraghi-Butrico lab is focused on exploring the key determinants of effective airway mucus clearance in health, as well as the consequences of its derangement in muco-obstructive lung diseases. Our lab leverages the unparalleled functional integration offered by in vivo animal models to test mechanistic hypotheses and vet therapeutic options for pre-clinical development.