Skip to main content
Filter faculty by: and
Search the faculty research descriptions using keywords or phrases:   

Our lab performs translational investigations of nutritional and microbiota determinants of host-pathogen interactions. We use gnotobiotic techniques (eg. germ free) mice to investigate complex microbe-microbe interactions in the context of host malnutrition, a common but poorly understood global health problem. Specific pathogens we model include Giardia (a ubiquitous parasite with unclear mechanisms of pathogenesis) and other intestinal parasites and multi drug resistant Enterobacterales (eg. Klebsiella). We work with several collaborators to translate findings in experimental models to outcomes in human cohorts. Emerging projects include determinants of host immune responses to mucosal viral infections and vaccines (eg. Polio and SARS-CoV-2).


My research aims to understand the pathogenesis and host immune response to emerging and re-emerging viral infections, including encephalitic alphaviruses such as chikungunya virus and respiratory coronaviruses such as SARS-CoV-2. Other areas of interest include examination of genetic and environmental factors that influence the response to infection and disease outcome, evaluation of vaccines and novel therapeutics against emerging viruses, and development and optimization of animal models of infectious disease.


Beck, Melinda A. Website | Email Publications
PHD PROGRAM Nutrition

My laboratory studies the relationship between host nutrition and the immune response to infectious disease. Using a mouse model of obesity, we are exploring the mechanism(s) for high mortality from influenza infection in obese mice compared with lean mice. We also have an ongoing clinical research study designed to understand the mechanism(s) involved that impair the influenza vaccine response in obese adults compared with healthy weight adults. We have also demonstrated that host deficiencies in antioxidant nutrients can lead to viral mutations resulting in an avirulent pathogen becoming virulent, suggesting that the host nutritional status can be a driving force for the evolution of viruses.


We study the molecular mechanisms of HIV latency. Transcriptional silencing of HIV is a key mechanism of persistence in patients, and is a barrier to viral eradication, but little is known about the latent reservoir or the molecular mechanisms that regulate it. As such, our repertoire of drugs for targeting latently infected cells is limited. Some latency reversing agents (LRAs) have been developed, but these are typically reactivate only a minor subset of proviruses. This inefficiency is in part due to the reservoir not constituting a uniform target, but instead being a heterogeneous set of cells with diverse characteristics and restrictions to HIV expression. However, most analyses of latency use bulk cell cultures assays in which crucial information about the behavior of individual cells is lost. Also, latently infected cells in patient samples are exceedingly rare, making them very difficult to study directly. New technological breakthroughs in the field of single cell analysis as well as the development of primary cell models for HIV latency now open the possibility of observing how latently infected cells form and are maintained at single cell resolution. Our lab has developed tools to study the establishment, maintenance and reversal of HIV latency at single cell resolution using multi-omics methods. Furthermore, we combine these approaches with genetic perturbation, time-lapse microscopy and novel bioengineering tools to gain insight into how the host cell regulates HIV latency. We have recently discovered using single cell RNAseq (scRNAseq) that latency in primary CD4 T cells is associated with expression of a distinct transcriptional signature (Bradley et al 2018). Our hypothesis is that this signature represents part of a cellular program that regulates latency, and that this program is an exciting novel target for the development of LRAs. Ongoing projects in the lab involve the application of new technologies to our model systems, and testing/validation of the roles of host cell pathways we have identified in HIV latency. Our overall goal is to identify new targets for the development of drugs to clear the HIV reservoir.


Experimental Evolution of Viruses. We use both computational and experimental approaches to understand how viruses adapt to their host environment. Our research attempts to determine how genome complexity constrains adaptation, and how virus ecology and genetics interact to determine whether a virus will shift to utilizing new host. In addition, we are trying to develop a framework for predicting which virus genes will contribute to adaptation in particular ecological scenarios such as frequent co-infection of hosts by multiple virus strains. For more information, and for advice on applying to graduate school at UNC, check out my lab website www.unc.edu/~cburch/lab.


Our laboratory now studies mechanisms of genome replication and pathogenesis of respiratory enteroviruses and evolution of neurovirulence using the tools of mechanistic enzymology, cell biology, stem-cell engineering, and virology. Our laboratory is also pioneering the development of tools to monitor viral infection dynamics on the single-cell level, aka “single-cell virology.”


The Chung lab is engineering immune cells, particularly T cells, to achieve maximum therapeutic efficacy at the right place and timing. We explore the crossroads of synthetic biology, immunology, and cancer biology. Particularly, we are employing protein engineering, next-gen sequencing, CRISPR screening, and bioinformatics to achieve our objectives:

(1) Combinatorial recipes of transcription factors for T cell programming.

(2) Technologies for temporal regulation and/or rewiring of tumor and immune signal activation (chemokine, nuclear, inhibitor receptors).

(3) Synthetic oncolytic virus for engineering tumor-T cell crosstalk.


The work in our laboratory is focused on understanding the molecular pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV), an oncogenic human virus. KSHV is associated with several types of cancer in the human population. We study the effect of KSHV viral proteins on cell proliferation, transformation, apoptosis, angiogenesis and cell signal transduction pathways. We also study viral transcription factors, viral replication, and the interactions of KSHV with the human innate immune system. Additionally, we are developing drug therapies that curb viral replication and target tumor cells.


Our lab tries to understand viral pathogenesis. To do so, we work with two very different viruses – West Nile Virus (WNV) and Kaposi¹s sarcoma-associated herpesvirus (KSHV/HHV-8).


In the Ferris lab, we use genetically diverse mouse strains to better understand the role of genetic variation in immune responses to a variety of insults. We then study these variants mechanistically. We also develop genetic and genomic datasets and resources to better identify genetic features associated with these immunological differences.


Goonetilleke, Nilu Website | Email Publications

We are a human immunology lab focusing on all aspects of T cell immunobiology in HIV-1 infection. Studies range from basic questions like, ‘What are the determinants of the first T cell response following infection?’ to translational challenges such as ‘What is the best design for a T cell vaccine to either prevent infection or achieve HIV-1 cure?’

Keywords: T cells, HIV-1, Escape, CD8 T cells, Vaccines, Cure, Vaccines


We are interested in basic DNA-protein interactions as related to – DNA replication, DNA repair and telomere function.  We utilize a combination of state of the art molecular and biochemical methods together with high resolution electron microscopes.


We study alphavirus infection to model virus-induced disease.  Projects include 1) mapping viral determinants involved in encephalitis, and 2) using a mouse model of virus-induced arthritis to identify viral and host factors associated with disease.


Research in my lab focuses on the mechanisms by which exposure to air pollutants alters respiratory immune responses and modifies susceptibility to and the severity of respiratory virus infections. Specifically, we are examining the effects of air pollutants such as ozone, woodsmoke and tobacco product exposures on host defense responses and influenza virus infections, using several in vitro models of the respiratory epithelium. In collaboration with physician scientists, we are also translating these studies into humans in vivo.


Antiretroviral therapy (ART) is effective in suppressing HIV-1 replication in the periphery, however, it fails to eradicate HIV-1 reservoirs in patients. The main barrier for HIV cure is the latent HIV-1, hiding inside the immune cells where no or very low level of viral particles are made. This prevents our immune system to recognize the latent reservoirs to clear the infection. The main goal of my laboratory is to discover the molecular mechanisms how HIV-1 achieves its latent state and to translate our understanding of HIV latency into therapeutic intervention.

Several research programs are undertaking in my lab with a focus of epigenetic regulation of HIV latency, including molecular mechanisms of HIV replication and latency establishment, host-virus interaction, innate immune response to viral infection, and the role of microbiome in the gut health. Extensive in vitro HIV latency models, ex vivo patient latency models, and in vivo patient and rhesus macaque models of AIDS are carried out in my lab. Multiple tools are applied in our studies, including RNA-seq, proteomics, metabolomics, highly sensitive digital droplet PCR and tissue RNA/DNAscope, digital ELISA, and modern and traditional molecular biological and biochemical techniques. We are also very interested in how non-CD4 expression cells in the Central Nervous System (CNS) get infected by HIV-1, how the unique interaction among HIV-1, immune cells, vascular cells, and neuron cells contributes to the initial seeding of latent reservoirs in the CNS, and whether we can target the unique viral infection and latency signaling pathways to attack HIV reservoirs in CNS for a cure/remission of HIV-1 and HIV-associated neurocognitive disorders (HAND). We have developed multiple tools to attack HIV latency, including latency reversal agents for “Shock and Kill” strategy, such as histone deacetylase inhibitors and ingenol family compounds of protein kinase C agonists, and latency enforcing agents for deep silencing of latent HIV-1. Several clinical and pre-clinical studies are being tested to evaluate their potential to eradicate latent HIV reservoirs in vivo. We are actively recruiting postdocs, visiting scholars, and technicians. Rotation graduate students and undergraduate students are welcome to join my lab, located in the UNC HIV Cure Center, for these exciting HIV cure research projects.


We use studies of HIV/SIV evolution to reveal information about viral dynamics in vivo. This typically involves genetic and/or phenotypic analyses of viral populations in samples from HIV-infected humans or SIV-infected nonhuman primates (NHPs). We are currently exploring the mechanisms that contribute to neurocognitive impairment in HIV-infected people by sequencing viral populations in the CNS of humans and NHPs not on antiretroviral therapy. We are also using these approaches to examine viral populations that persist during long-term antiretroviral therapy in an effort to better understand the viral reservoirs that must be targeted in order to cure HIV-infected people.


Our lab is focused on the development of HIV-1 vectors for gene therapy of genetic disease.  In addition, we are using the vector system to study HIV-1 biology.  We are also interested in utilizing the HIV-1 vector system for functional genomics.


We use molecular virology approaches and mouse models of infection to understand innate immune mechanisms that control arbovirus pathogenesis (e.g. West Nile, Zika, and La Crosse viruses). Bat flaviviruses have unusual vector/host relationships; understanding the viral and host factors that determine flavivirus host range is important for recognizing potential emerging infections. We are studying the antiviral effects of interferon lambda (IFN-λ) at barrier surfaces, including the blood-brain barrier and the skin. We also use mouse models of atopic dermatitis and herpes simplex virus infection to understand the effects of IFN- λ in the skin.


The overall goal of our laboratory is to obtain new insights into the host-virus interaction, particularly in HIV infection, and translate discoveries in molecular biology and virology to the clinic to aid in the treatment of HIV infection. A subpopulation of HIV-infected lymphocytes is able to avoid viral or immune cytolysis and return to the resting state. Current work focuses on the molecular mechanisms that control the latent reservoir of HIV infection within resting T cells. We have found that cellular transcription factors widely distributed in lymphocytes can remodel chromatin and maintain quiescence of the HIV genome in resting CD4+ lymphocytes. These studies give insight into the basic molecular mechanisms of eukaryotic gene expression, as well as new therapeutic approaches for HIV infection.


Dr. Meeker’s research is focused on the mechanisms of HIV neuropathogenesis and the development of therapeutic strategies for the treatment of neuroinflammation. Inflammatory changes within the brain caused by the viral infection initiate a toxic cascade that disrupts normal neural function and can eventually lead to neuronal death. To explore the mechanisms responsible for this damage, we investigate changes in calcium homeostasis, glutamate receptor function and inflammatory responses in primary neuronal, microglial and macrophage cultures. New therapeutic approaches targeted to signal transduction pathways and calcium regulation that protect the neurons and reduce inflammation are under investigation.


Our lab focuses on the life cycle of cancer-associated human papillomaviruses (HPV); small DNA viruses that exhibit a strict tropism for the epithelium. Several studies in our lab focus on the interface of HPV with cellular DNA damage response (DDR) pathways and how HPV manipulates DNA repair pathways to facilitate viral replication. We are also interested in understanding how the viral life cycle is epigenetically regulated by the DDR as well as by other chromatin modifiers. Additionally, we are investigating how HPV regulates the innate immune response throughout the viral life cycle.


How does a virus gain control over the host cell? My laboratory is interested in answering this question at the molecular level. By combining molecular biology and virology with new technologies (e.g. mass spectrometry, next generation sequencing), we investigate the mechanisms utilized by viruses to hijack infected cells. By understanding the specific function(s) of viral proteins during infection, we identify strategies used by viruses for deregulation of host cell processes. We use this information to characterize novel features of cell signaling pathways during infection, and to identify potential targets for anti-viral therapeutics.


My laboratory, located in the Cystic Fibrosis/Pulmonary Research and Treatment Center in the Thurston-Bowles building at UNC, is interested in how respiratory viruses infect the airway epithelium of the conducting airways of the human lung.


I work on predicting the determinants of adaptive immune responses. Most of my work has focused on T-cell epitope prediction for mutant antigens derived from cancer. I have collaborated closely with clinical groups to translate this work in personalized cancer vaccine trials. More recently I have also been working on joint T-cell and B-cell prediction for viral pathogens. The technologies and techniques applied across all of my projects are at the intersection of computational immunology, genomics, and machine learning.


We are engaged in studying the molecular biology of the human parvovirus adeno-associated virus (AAV) with the intent to using this virus for developing a novel, safe, and efficient delivery system for human gene therapy.


I am a surgeon-scientist specialized in head and neck cancers. My goal is to address translationalquestions with genomic data and bioinformatic methods, as well as benchtop experimentation. My clinical practice as a head and neck cancer surgeon also influences my research by helping me seek solutions to problems that will directly inform gaps in the current treatment protocols.

I have developed a strong interest in HPV genomics as well as HPV/host genome integrations, as these factors are intrinsically related to transcriptional diversity and patient outcomes in HPV-associated head and neck cancers. Our work has helped to demonstrate that a novel mechanism of HPV-mediated oncogenesis requiring NF-kB activation is present in nearly 50% of oropharyngeal tumors. In this vein, we are aggressively investigating the cellular interplay between the NF-kB pathway and persistent HPV infection, tumor radiation response, NRF2 signaling, and more.

Another outgrowth of this work has been investigating APOBEC3B and its non-canonical roles in regulating transcription. Our preliminary work has demonstrated that APOBEC3B has surprisingly strong transcriptional effects in HPV+ HNSCC cells and may promote oncogenesis and tumor maintenance by suppressing the innate immune response and influencing the HPV viral lifecycle.

Our group also have a strong interest in translational genomic studies. Our group is working to develop methods that will make gene expression-based biomarkers more successful in the clinic, as well as studying many aspects of genomic alterations that contribute to the development of squamous cell carcinomas.


Dr. Sheahan is an expert virologist with a primary appointment in the Department of Epidemiology in the Gillings School of Global Public Health and a secondary appointment in Microbiology and Immunology in the School of Medicine. His research is focused on understanding emerging viral diseases and developing new means to stop them with a current focus on coronavirus and hepacivirus.


First, we study the complex HIV-1 population that exists within a person.  We use this complexity to ask questions about viral evolution, transmission, compartmentalization, and pathogenesis.  Second, we are exploring the impact of drug resistance on viral fitness and identifying new drug targets in the viral protein processing pathway.  Third, we participate in a collaborative effort to develop an HIV-1 vaccine.  Fourth, we are using mutagenesis to determine the role of RNA secondary structure in viral replication.


We want to understand why common pediatric respiratory virus infections cause severe disease in some people. Currently we focus on enterovirus D68, which typically causes colds but rarely causes acute flaccid myelitis, a polio-like paralyzing illness in children. We study both the pathogen and the host immune response, as both can contribute to pathogenesis. Projects focus on use of reverse genetic systems to create reporter viruses to infect both human respiratory epithelial cultures and small animal models such as mice. Human monoclonal antibody effects on pathogenesis are also of interest.


One of the most amazing discoveries of recent years has been the profound role of RNA in regulating all areas of biology. Further, the functions of many RNA molecules require that an RNA fold back on itself to create intricately and complexly folded structures. Until recently, however, we had little idea of the broad contributions of RNA structure and function because there simply did not exist rigorous methods for understanding RNA molecules in cells and viruses. The vision of our laboratory is therefore, first, to invent novel chemical microscopes that reveal quantitative structure and function interrelationships for RNA and, second, to apply these RNA technologies to broadly important problems in biology. Mentoring and research in the lab are highly interdisciplinary. Students learn to integrate ideas and concepts spanning chemical and computational biology, and technology development, and extending to practical applications in virology, understanding biological processes in cells, and discovery of small molecule ligands targeted against medically important RNAs. Each student has a distinct project which they drive to an impactful conclusion, but do so as part of the lab team which, collectively, has shown an amazing ability to solve big problems in RNA biology. The overarching goal of mentoring in the lab is to prepare students for long-term leadership roles in science.


The Whitmire lab investigates how the adaptive immune system protects against virus infection.  The research is focused on understanding the mechanisms by which interferons, cytokines, and other accessory molecules regulate T cell numbers and functions following acute and chronic virus infections.  The goal is to identify and characterize the processes that differentiate memory T cells in vivo. The long-term objective is to develop strategies that improve vaccines against infectious diseases by manipulating these pathways.