Research Interest: Respiratory Physiology & Infections
Name | PhD Program | Research Interest | Publications |
---|---|---|
Chen, Gang WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We use cutting edge technology to study pathogenesis of human pulmonary diseases including cystic fibrosis, Job’s syndrome, idiopathic pulmonary fibrosis by both human specimens, mouse genetic models, with a goal of finding the therapies. Recently, we developed a serial of lung epithelial-lineage tracing systems, providing the powerful tools for identify mechanisms of lung disease involved in post-acute sequelae SARS-CoV-2 infection, also known as “long COVID”, in collaboration with Dr. Ralph Baric’s Lab at UNC-CH. |
Ehre, Camille WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Ehre laboratory studies the role of mucus in obstructive pulmonary diseases, such as asthma, and cystic fibrosis (CF), as well as in response to respiratory viruses (SARS-CoV-2 and RSV). Our research goal is to gain insights into the basic defects of airway mucus that lead to impaired mucociliary clearance and viral penetration. We use in vitro and in vivo models to study disease pathogenesis, test pharmacological agents and investigate how mucus obstruction and viral infection cause epithelial damage. In addition, we examine patient specimens to understand the role of inflammatory cytokines in disease severity. For these projects, we use integrative omics technologies (transcriptomics, digital spatial profiler, phenocycler) and high-resolution imaging (live, laser and scanning/transmission electron microscopy) to answer critical questions regarding mucus biology and airways response to inhaled pathogens and/or treatment. |
Livraghi-Butrico, Alessandra WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Livraghi-Butrico lab is focused on exploring the key determinants of effective airway mucus clearance in health, as well as the consequences of its derangement in muco-obstructive lung diseases. Our lab leverages the unparalleled functional integration offered by in vivo animal models to test mechanistic hypotheses and vet therapeutic options for pre-clinical development. |