Research Interest: Regenerative Medicine
Name | PhD Program | Research Interest | Publications |
---|---|---|
Hsueh, Ming-Feng WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Dr. Hsueh’s research is at the forefront of translational musculoskeletal and aging biology, utilizing cutting-edge multi-omic technologies to pioneer new therapeutic strategies for regenerating damaged joint tissue, with a particular focus on osteoarthritis (OA). Our lab employs advanced in vitro cell culture and cartilage explant models to delve into the mechanisms driving OA pathogenesis and to evaluate the potential of novel drug therapies. A key area of our research investigates the role of noncoding RNAs in human musculoskeletal tissues. We aim to uncover the intricate signaling pathways and downstream gene networks influenced by these noncoding RNAs. Our ultimate goal is to harness this knowledge to enhance the body’s natural repair mechanisms, providing innovative solutions to combat the progression of OA and restore joint function |
Azizoglu, Berfin WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our lab studies body-wide control of organ growth and regeneration. The mammalian body is reticulated by blood vessels and neurons. How these networks communicate with organ cells to orchestrate local and body-wide decisions is obscure. We study this question with a focus on the mouse liver, the uniquely regenerative visceral organ. Current projects in the lab include 1-researching the role of a novel vascular progenitor network in liver regeneration, 2-determining the mechanisms of injury perception by liver innervation, and 3-in vitro assembly of reticulated, responsive liver tissue. |
Vetreno, Ryan PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research interests involve investigation of proinflammatory neuroimmune and epigenetic mechanisms in animal models of developmental neurobiology and neurodegeneration, including (1) alcohol pharmacology, (2) alcohol responsivity and tolerance, (3) adolescent neurodevelopment, (4) cholinergic system and neurocircuitry, (5) microglial function, and (6) Alzheimer’s disease. A major focus of the laboratory is elucidation of neuroimmune and epigenetic mechanisms underlying adolescent binge alcohol-induced disruption of basal forebrain cholinergic neurocircuitry in adulthood. A second major focus of the laboratory is investigation of lasting adolescent binge drinking-induced neuroimmune priming as a novel etiological factor contributing to the onset and progression of basal forebrain neuropathology in Alzheimer’s disease. Our laboratory combines ex vivo and in vivo rodent models of alcohol abuse and Alzheimer’s disease with innovative molecular techniques. |
Chen, Gang WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We use cutting edge technology to study pathogenesis of human pulmonary diseases including cystic fibrosis, Job’s syndrome, idiopathic pulmonary fibrosis by both human specimens, mouse genetic models, with a goal of finding the therapies. Recently, we developed a serial of lung epithelial-lineage tracing systems, providing the powerful tools for identify mechanisms of lung disease involved in post-acute sequelae SARS-CoV-2 infection, also known as “long COVID”, in collaboration with Dr. Ralph Baric’s Lab at UNC-CH. |
McCauley, Heather WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The McCauley Lab is interested in how the food we eat changes our physiology. Rare, nutrient sensing cells in the intestine called enteroendocrine cells secrete hormones in response to environmental cues that orchestrate systemic metabolism. How these cells regulate their neighbors in the gut is not well understood. We use mouse models which lack enteroendocrine cells and human pluripotent stem cell derived intestinal organoids to discover new roles for these master metabolic cells in the regulation of intestinal physiology and function. Enteroendocrine cells are dysregulated in inflammatory bowel disease, type 2 diabetes, and obesity, and loss of enteroendocrine cells results in malabsorptive diarrhea with poor survival. Our research has the potential to improve human health for a wide segment of the global population. |