Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Stanley, Natalie
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Immunology, Medical Imaging, Vaccine Development

We are a computational biology lab jointly located between the department of computer science and the computational medicine program. We develop new methods for automated, efficient, and unbiased analysis of immune profiling data, such as, flow cytometry, mass cytometry, and imaging mass cytometry. Our work specifically seeks to link particular immune cell-types and their functional responses to clinical or experimental phenotypes. Application areas of interest include, vaccine development, T-cell differentiation and designing more effective immunotherapies, neurodegenerative diseases, sexually transmitted diseases, and pregnancy. To design scalable and automated tools for these data, we develop and apply new methods using machine learning and graph signal processing.

Hwang, Janice

EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Aging/Alzheimer's, Diabetes, Human Subjects Research, Medical Imaging, Metabolism, Neurobiology, Physiology, Translational Medicine

My group is interested in understanding the effects of obesity and diabetes on the brain, particularly related to cerebral function and energetics. We conduct physiology based, mechanistic human and rodent studies to investigate fundamental questions such as how does the brain sense various nutrients (sugar, fat, etc), how does metabolic disease, sleep, aging impact brain function and metabolism? Using classic human metabolic techniques including hyperinsulinemic and hyper/hypoglycemic clamps coupled with advanced neuroimaging modalities including 1H and 13C magnetic resonance spectroscopy, functional MRI, and PET-CT imaging, my group has shown that glucose transport capacity into the human brain can be modified by factors such as obesity and insulin resistance as well as hyperglycemia, hypoglycemia and glycemic variability. We also have interests in using novel human imaging modalities to understand how obesity and diabetes impact neuroinflammation and neurodegeneration.