Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Cully, David

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Genetics, Molecular Biology

“I am interested in using molecular genetic approaches to study the proteins and signaling pathways responsible for inheritable conditions and metabolic processes in eukaryotes. I believe that model organisms are an especially valuable tool for investigating these targets thanks to the wide array of molecular genetic tools available.”

Chlebowski, Mady

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cell Biology, Developmental Biology, Molecular Biology

“I am interested in research questions at the intersection between cell and developmental biology; specifically, understanding how cells get to the right place at the right time, and make the right shapes to form complex structures and systems. I am particularly interested in answering these questions within neurons, but also find other tissues extremely exciting. “

Moore, Makala

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Developmental Biology, Molecular Biology, Translational Medicine

“I am very interested in all aspects of the microbiome: microbial ecology and the establishment of microbial niches within a complex system (why are these microbes where they are?), the functionality of the microbiome in terms of metabolites (what are these microbes doing here?), the interaction between the microbiome and the immune system (how is the microbiome established and maintained?), and how the microbiome influences health and disease (how does the microbiome interact with other systems and/or respond to insults/exposures?)”

Hu, Yunan

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Genomics, Molecular Biology, Organismal Biology

“Microbiology, especially the gut microbiome regulated by nutrients and response to the environment or stress. It could be the cellular mechanisms or the clinical applications.”

Okuda, Kenichi
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Molecular Biology, Molecular Mechanisms of Disease, Pulmonary Research, Respiratory Physiology & Infections

We inhale about 10,000 L of air to take oxygen into our bodies every day. Along with the inhaled air, numerous pathogens, chemical pollutants, and other irritants are inhaled, which could pose potential life-threatening risks to our lungs. However, our lungs are protected by mucociliary clearance (MCC), a critical innate defense mechanism that is important for maintaining lung health. Okuda lab’s overall research interest focuses on how the MCC system is regulated to maintain homeostasis in the lung and how it fails in muco-obstructive lung diseases, including cystic fibrosis (CF), asthma, and COPD. Our previous work successfully characterized the regional expression patterns of major airway secretory mucins, MUC5AC/MUC5B, and CFTR/ionocytes in normal and CF human airways. These investigations provide insight into the small airway region (< 2 mm in diameter) as a critical site for pathogenesis of muco-obstructive lung diseases. We have developed a microdissection technique for human small airways and established in vitro and explant small airway epithelial cell cultures. We have combined these culture systems with single-cell-based omics approaches and gene editing technologies to understand cellular biology and physiology of the human small airways. In response to the emergent situation caused by SARS-CoV-2 pandemic, Okuda lab has been also actively involved in COVID-19 research.

Edwards, Whitney

EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cardiovascular Biology, Cardiovascular Disease, Cell Biology, Cell Signaling, Developmental Biology, Developmental Disorders, Disease, Genetic Basis of Disease, Metabolism, Molecular Biology, Molecular Mechanisms of Disease

Our lab aims to identify the fundamental molecular mechanisms underlying heart development and congenital heart disease. Our multifaceted approach includes primary cardiac cell culture, genetic mouse models, biochemical/molecular studies, and transcriptomics. Additionally, we employ proteomics-based methods to investigate 1) protein expression dynamics, 2) protein interaction networks, and 3) post-translational modifications (PTMs) in heart development. Current research projects focus on investigating the function of two essential PTMs in cardiogenesis: protein prenylation and palmitoylation.

Chen, Gang
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Molecular Biology, Molecular Mechanisms of Disease, Pulmonary Research, Regenerative Medicine, Respiratory Physiology & Infections, Signal Transduction, Stem Cells

We use cutting edge technology to study pathogenesis of human pulmonary diseases including cystic fibrosis, Job’s syndrome, idiopathic pulmonary fibrosis by both human specimens, mouse genetic models, with a goal of finding the therapies. Recently, we developed a serial of lung epithelial-lineage tracing systems, providing the powerful tools for identify mechanisms of lung disease involved in post-acute sequelae SARS-CoV-2 infection, also known as “long COVID”, in collaboration with Dr. Ralph Baric’s Lab at UNC-CH.

Rosenthal, Adam
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Molecular Biology, Pathogenesis & Infection, Systems Biology

Our lab uses a systems biology approach to study phenotypic heterogeneity in bacteria. We develop tools that quantify single cell bacterial transcription. We then compare dynamic measurements during vegetative growth and infection to identify regulators of gene expression and mechanisms that bacteria use to coordinate community organization. With this data we want to understand the role of heterogeneity and noise in infectious disease.

Lin, Jessica
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Genetics, Genomics, Molecular Biology, Molecular Medicine, Pathogenesis & Infection

Dr. Lin is an infectious disease physician-scientist whose research lies at the interface of clinical and molecular studies on malaria. My current projects focus on 1) determinants of malaria transmission from human hosts to mosquitos and 2) the epidemiology and relapse patterns of Plasmodium ovale in East Africa. Work in my lab involves applying molecular tools (real-time PCR, amplicon deep sequencing, whole genome sequencing, and to a lesser extent antigen and antibody assays) to samples collected in clinical field studies to learn about malaria epidemiology, transmission, and pathogenesis.

Jacox, Laura
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Oral & Craniofacial Biomedicine, Pathobiology & Translational Science

RESEARCH INTEREST
Behavior, Developmental Biology, Molecular Biology, Pathology, Translational Medicine

The Jacox Lab aims to improve patient care and outcomes in oral health. This goal takes shape via several tracks of interdisciplinary human studies:

-A primary focus of the lab has been on outcomes of jaw surgery patients, who suffer from Dentofacial Disharmonies (DFD). Patients with DFD have severe skeletal disproportions with underbites or open bites, necessitating orthodontics and jaw surgery for full correction. Roughly 80% of our patients with DFD exhibit speech distortions, compared to 5% of the general population, which negatively impact their self-confidence and quality of life. Despite patients pursuing invasive surgery, it is unknown whether jaw surgery is palliative for articulation errors. We are using ultrasound, audio and video imaging to explore the mechanism of articulation errors among patients with DFD. Furthermore, our lab is conducting a longitudinal study of DFD patients to determine if jaw surgery improves speech distortions, in collaboration with oral surgeons, linguistics and speech pathology.

-An additional focus of our lab has been studying use of Animal Assisted Therapy for management of anxiety and pain in dentistry. Dental anxiety effects 21-50% of patients and is associated with poor long-term oral health outcomes and need for urgent care due to dental avoidance. Non-pharmacological behavior interventions like dog therapy holds promise for reducing pain and anxiety perception for patients, and therefore improving dental experiences and promoting improved health outcomes. The lab is conducting a randomized controlled trial to evaluate best practices for canine therapy in pediatric dentistry, in collaboration with pediatric dentists, a psychology professor whose expertise is anxiety, and the UNC Biobehavioral Lab.

-As part of the COVID-19 research response, we are studying FDA-approved antiseptic mouth rinses for their ability to limit salivary viral infectivity to reduce risk of SARS-CoV-2 transmission. If an oral rinse is found to be efficacious at inactivating the SARS-CoV-2 virus, it could be a valuable preventative measure in settings where masks are removed, such as dental care, social settings, eating out, or work presentations. This study is conducted in collaboration with leading virologists and infectious disease experts at UNC.