Skip to main content
NameEmailPhD ProgramResearch InterestPublications
MacDonald, Jeffrey
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Biomaterials, Biophysics, Systems Biology, Toxicology

Dr. Macdonald is the Founder and Scientific Director of the new Metabolomic Facility and Co-Scientific Director of the joint UNC/NCSU/NOAA Marine MRI facility at Pivers Island near Beaufort NC. Dr. Macdonald’s research goal is to combine metabolomics and tissue engineering and apply these tools to quantitative biosystem analysis.

Manis, Paul B.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biophysics, Computational Biology, Neurobiology, Physiology

Our fundamental interest is in how the nervous system processes sensory information. We have been studying these problems using in vitro preparations that allow us to examine how single cells in the auditory cortex and auditory brainstem operate to integrate synaptic input, generate precisely timed action potentials, and adapt to changes in sensory input produced by hearing loss.  This has involved investigations into the kinds of ion channels expressed in particular subsets of cells, determination of the kinetics and voltage dependence of those channels, studies of synaptic transmission, and the generation of computational models that reflect our current understanding of how these cells operate and produce responses to acoustic stimuli.  A longstanding interest has been in the types of processing that take place in the elaborate network of cells in cerebral cortex. The structure and function of neurons in the auditory cortex depends extensively on sensory experience. We are now studying the functional spatial organization of auditory cortical neural networks at the level of connections between classes individual cells, using optical methods in normal mice and mice with noise-induced hearing loss.

Pielak, Gary J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Chemistry

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Computational Biology, Structural Biology

My graduate students and I use the formalism of equilibrium thermodynamics and the tools of molecular biology and biophysics to understand how nature designs proteins.

Redinbo, Matt
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Chemistry, Microbiology & Immunology, Oral & Craniofacial Biomedicine, Pathobiology & Translational Science, Pharmaceutical Sciences, Pharmacology

RESEARCH INTEREST
Bacteriology, Biochemistry, Bioinformatics, Biophysics, Cancer Biology, Chemical Biology, Computational Biology, Drug Delivery, Drug Discovery, Metabolism, Microbiology, Molecular Biology, Molecular Medicine, Pharmacology, Plant Biology, Structural Biology, Systems Biology, Toxicology

We are interested in unraveling the molecular basis for human disease and discover new treatments focused on human and microbial targets. Our work extends from atomic-level studies using structural biology, through chemical biology efforts to identify new drugs, and into cellular, animal and clinical investigations. While we are currently focused on the gut microbiome, past work has examined how drugs are detected and degraded in humans, proteins designed to protect soldiers from chemical weapons, how antibiotic resistance spreads, and novel approaches to treat bacterial infections. The Redinbo Laboratory actively works to increase equity and inclusion in our lab, in science, and in the world. Our lab is centered around collaboration, open communication, and trust. We welcome and support anyone regardless of race, disability, gender identification, sexual orientation, age, financial background, or religion. We aim to: 1) Provide an inclusive, equitable, and encouraging work environment 2) Actively broaden representation in STEM to correct historical opportunity imbalances 3) Respect and support each individual’s needs, decisions, and career goals 4) Celebrate our differences and use them to discover new ways of thinking and to better our science and our community

Sancar, Aziz
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Genetics & Molecular Biology, Toxicology

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Molecular Biology

We have three main areas of research focus: (1) Nucleotide excision repair: The only known mechanism for the removal of bulky DNA adducts in humans. (2) DNA damage checkpoints:  Biochemical pathways that transiently block cell cycle progression while DNA contains damage.  (3) Circadian rhythm:  The oscillations in biochemical, physiological and behavioral processes that occur with the periodicity of about 24 hours.

Slep, Kevin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Cell Biology, Molecular Biology, Neurobiology, Structural Biology

Our lab examines cytoskeletal dynamics, the molecules that regulate it and the biological processes it is involved in using live cell imaging, in vitro reconstitution and x-ray crystallography.  Of particular interest are the microtubule +TIP proteins that dynamically localize to microtubule plus ends, communicate with the actin network, regulate microtubule dynamics, capture kinetochores and engage the cell cortex under polarity-based cues.

Sondek, John
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Cell Signaling, Structural Biology

Our laboratory studies signal transduction systems controlled by heterotrimeric G proteins as well as Ras-related GTPases using a variety of biophysical, biochemical and cellular techniques. Member of the Molecular & Cellular Biophysics Training Program.

Waters, Marcey
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Chemistry

RESEARCH INTEREST
Biochemistry, Biophysics, Chemical Biology

Our research focuses on several different aspects of biomolecular recognition, including (1) protein post-translational modifications, (2) protein-nucleic acid interactions, and (3) protein-protein interactions that are important in a number of different biological areas, including epigenetics and cancer.  We use bio-organic chemistry combined with peptide design and biophysical chemistry to study these interactions and to develop new tools for inhibition and/or sensing of these biomolecular interactions.

Weeks, Kevin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Chemistry, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Chemical Biology, Computational Biology, Drug Discovery, Quantitative Biology, Structural Biology, Virology

One of the most amazing discoveries of recent years has been the profound role of RNA in regulating all areas of biology. Further, the functions of many RNA molecules require that an RNA fold back on itself to create intricately and complexly folded structures. Until recently, however, we had little idea of the broad contributions of RNA structure and function because there simply did not exist rigorous methods for understanding RNA molecules in cells and viruses. The vision of our laboratory is therefore, first, to invent novel chemical microscopes that reveal quantitative structure and function interrelationships for RNA and, second, to apply these RNA technologies to broadly important problems in biology. Mentoring and research in the lab are highly interdisciplinary. Students learn to integrate ideas and concepts spanning chemical and computational biology, and technology development, and extending to practical applications in virology, understanding biological processes in cells, and discovery of small molecule ligands targeted against medically important RNAs. Each student has a distinct project which they drive to an impactful conclusion, but do so as part of the lab team which, collectively, has shown an amazing ability to solve big problems in RNA biology. The overarching goal of mentoring in the lab is to prepare students for long-term leadership roles in science.

Yeh, Elaine
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Biophysics, Cancer Biology, Cell Biology, Genetics

The site of microtubule attachment to the chromosome is the kinetochore, a complex of over 60 proteins assembled at a specific site on the chromosome, the centromere. Almost every kinetochore protein identified in yeast is conserved through humans and the organization of the kinetochore in yeast may serve as the fundamental unit of attachment. More recently we have become interested in the role of two different classes of ATP binding proteins, cohesions (Smc3, Scc1) and chromatin remodeling factors (Cac1, Hir1, Rdh54) in the structural organization of the kinetochore and their contribution to the fidelity of chromosome segregation.