Research Interest: Biophysics
Name | PhD Program | Research Interest | Publications |
---|---|---|
Bloom, Kerry WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our objective is to understand the dynamic and structural properties of chromosomes during mitosis. We use live cell imaging techniques to address how kinetochores are assembled, capture microtubules and promote faithful segregation of chromosomes. |
Jarstfer, Michael WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Jarstfer lab uses an interdisciplinary approach to solve biological problems that are germane to human health. Currently we are investigating the structure of the enzyme telomerase, we are developing small-molecules that target the telomere for drug discovery and chemical biology purposes, and we are investigating the signals that communicate the telomere state to the cell in order to control cellular immortality. We are also engaged in a drug/chemical tool discovery project to identify small molecules that control complex social behavior in mammals. Techniques include standard molecular biology and biochemistry of DNA, RNA, and proteins, occasional organic synthesis, and high throughput screening. |
Kash, Thomas WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Emotional behavior is regulated by a host of chemicals, including neurotransmitters and neuromodulators, acting on specific circuits within the brain. There is strong evidence for the existence of both endogenous stress and anti-stress systems. Chronic exposure to drugs of abuse and stress are hypothesized to modulate the relative balance of activity of these systems within key circuitry in the brain leading to dysregulated emotional behavior. One of the primary focuses of the Kash lab is to understand how chronic drugs of abuse and stress alter neuronal function, focusing on these stress and anti-stress systems in brain circuitry important for anxiety-like behavior. In particular, we are interested in defining alterations in synaptic function, modulation and plasticity using a combination of whole-cell patch-clamp physiology, biochemistry and mouse models. Current projects are focused on the role of a unique population of dopamine neurons in alcoholism and anxiety. |
Kuhlman, Brian WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We focus on a variety of design goals including the creation of novel protein-protein interactions, protein structures, vaccine antigens and light activatable protein switches. Central to all of our projects is the Rosetta program for protein modeling. In collaboration with developers from a variety of universities, we are continually adding new features to Rosetta as well as testing it on new problems. |
Laederach, Alain WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Laederach Lab is interested in better understanding the relationship between RNA structure and folding and human disease. We use a combination of computational and experimental approaches to study the process of RNA folding and in the cells. In particular, we develop novel approaches to analyze and interpret chemical and enzymatic mapping data on a genomic scale. We aim to fundamentally understand the role of RNA structure in controlling post-transcriptional regulatory mechanisms, and to interpret structure as a secondary layer of information (http://www.nature.com/nature/journal/v505/n7485/full/505621a.html). We are particularly interested in how human genetic variation affects RNA regulatory structure. We investigate the relationship between disease-associated Single Nucleotide Polymorphisms occurring in Human UTRs and their effect on RNA structure to determine if they form a RiboSNitch. |
Gladfelter, Amy WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We study large multinucleate cells such as fungi, muscle and placenta to understand how cells are organized in time and space. Using quantitative live cell microscopy, biochemical reconstitution and computational approaches we examine how the physical properties of molecules generate spatial patterning of cytosol and scaling of cytoskeleton scaffolds in the cell cycle. |
Lai, Samuel WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our dynamic group are broadly involve in three topics: (i) prevention of infectious diseases by harnessing interactions between secreted antibodies and mucus, (ii) immune response to biomaterials, and (iii) targeted delivery of nanomedicine. Our group was the first to discover that secreted antibodies can interact with mucins to trap pathogens in mucus. We are now harnessing this approach to engineer improved passive and active immuniation (i.e. vaccines) at mucosal surfaces, as well as understand their interplay with the mucosal microbiome. We are also studying the adaptive immune response to polymers, including anti-PEG antibodies, and how it might impact the efficacy of PEGylated therapeutics. Lastly, we are engineering fusion proteins that can guide targeted delivery of nanomedicine to heterogenous tumors and enable personalized medicine. |
Lee, Andrew WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We study protein structure and dynamics as they relate to protein function and energetics. We are currently using NMR spectroscopy (e.g. spin relaxation), computation, and a variety of other biophysical techniques to gain a deeper understanding of proteins at atomic level resolution. Of specific interest is the general phenomenon of long-range communication within protein structures, such as observed in allostery and conformational change. A. Lee is a member of the Molecular & Cellular Biophysics Training Program. |
MacDonald, Jeffrey WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Dr. Macdonald is the Founder and Scientific Director of the new Metabolomic Facility and Co-Scientific Director of the joint UNC/NCSU/NOAA Marine MRI facility at Pivers Island near Beaufort NC. Dr. Macdonald’s research goal is to combine metabolomics and tissue engineering and apply these tools to quantitative biosystem analysis. |
Manis, Paul B. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our fundamental interest is in how the nervous system processes sensory information. We have been studying these problems using in vitro preparations that allow us to examine how single cells in the auditory cortex and auditory brainstem operate to integrate synaptic input, generate precisely timed action potentials, and adapt to changes in sensory input produced by hearing loss. This has involved investigations into the kinds of ion channels expressed in particular subsets of cells, determination of the kinetics and voltage dependence of those channels, studies of synaptic transmission, and the generation of computational models that reflect our current understanding of how these cells operate and produce responses to acoustic stimuli. A longstanding interest has been in the types of processing that take place in the elaborate network of cells in cerebral cortex. The structure and function of neurons in the auditory cortex depends extensively on sensory experience. We are now studying the functional spatial organization of auditory cortical neural networks at the level of connections between classes individual cells, using optical methods in normal mice and mice with noise-induced hearing loss. |