Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Cheney, Richard
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biophysics, Cancer Biology, Cardiovascular Biology, Cell Biology, Neurobiology

Our goal is to understand the fundamental cell biology underlying processes such as neurodevelopment, angiogenesis, and the metastasis of cancer cells. Most of our experiments focus on molecular motors such as myosin-X and on the finger-like structures known as filopodia. We generally utilize advanced imaging techniques such as TIRF and single-molecule imaging in conjunction with mammalian cell culture. We also use molecular biology and biochemistry and are in the process of developing a mouse model to investigate the functions of myosin-X and filopodia. We are looking for experimentally driven students who have strong interests in understanding the molecular basis of dynamic cellular processes such as filopodial extension, mechanosensing, and cell migration.

Carter, Charles
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Computational Biology, Molecular Biology, Structural Biology

Molecular evolution and mechanistic enzymology find powerful synergy in our study of aminoacyl-tRNA synthetases, which translate the genetic code. Class I Tryptophanyl-tRNA Synthetase stores free energy as conformational strain imposed by long-range, interactions on the minimal catalytic domain (MCD) when it binds ATP. We study how this allostery works using X-ray crystallography, bioinformatics, molecular dynamics, enzyme kinetics, and thermodynamics. As coding sequences for class I and II MCDs have significant complementarity, we also pursuing their sense/antisense ancestry. Member of the Molecular & Cellular Biophysics Training Program.

Campbell, Sharon
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Cell Biology & Physiology

RESEARCH INTEREST
Biochemistry, Biophysics, Cell Biology, Cell Signaling, Structural Biology

Current research projects in the Campbell laboratory include structural, biophysical and biochemical studies of wild type and variant Ras and Rho family GTPase proteins, as well as the identification, characterization and structural elucidation of factors that act on these GTPases. Ras and Rho proteins are members of a large superfamily of related guanine nucleotide binding proteins. They are key regulators of signal transduction pathways that control cell growth. Rho GTPases regulate signaling pathways that also modulate cell morphology and actin cytoskeletal organization. Mutated Ras proteins are found in 30% of human cancers and promote uncontrolled cell growth, invasion, and metastasis. Another focus of the lab is in biochemical and biophysical characterization of the cell adhesion proteins, focal adhesion kinase, vinculin, paxillin and palladin. These proteins are involved in actin cytoskeletal rearrangements and cell motility, amongst other functions. Most of our studies are conducted in collaboration with laboratories that focus on molecular and cellular biological aspects of these problems. This allows us to direct cell-based signaling, motility and transformation analyses. Member of the Molecular & Cellular Biophysics Training Program.

Bourret, Bob
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Biochemistry, Biophysics, Genetics, Structural Biology

Our long-term goal is to define the molecular mechanisms of two-component regulatory systems, which are utilized for signal transduction by bacteria, archaea, eukaryotic microorganisms, and plants. Our current focus is to identify and understand the features that control the rates of several different types of protein phosphorylation and dephosphorylation reactions. The kinetics of phosphotransfer reactions can vary dramatically between different pathways and reflect the need to synchronize biological responses (e.g. behavior, development, physiology, virulence) to environmental stimuli. Member of the Molecular & Cellular Biophysics Training Program.

Bloom, Kerry
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Biophysics, Cell Biology, Genetics, Molecular Biology

Our objective is to understand the dynamic and structural properties of chromosomes during mitosis. We use live cell imaging techniques to address how kinetochores are assembled, capture microtubules and promote faithful segregation of chromosomes.

Jarstfer, Michael
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Biochemistry, Biophysics, Chemical Biology, Molecular Medicine, Structural Biology

The Jarstfer lab uses an interdisciplinary approach to solve biological problems that are germane to human health.   Currently we are investigating the structure of the enzyme telomerase, we are developing small-molecules that target the telomere for drug discovery and chemical biology purposes, and we are investigating the signals that communicate the telomere state to the cell in order to control cellular immortality. We are also engaged in a drug/chemical tool discovery project to identify small molecules that control complex social behavior in mammals.  Techniques include standard molecular biology and biochemistry of DNA, RNA, and proteins, occasional organic synthesis, and high throughput screening.

Kash, Thomas
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience, Pharmacology

RESEARCH INTEREST
Behavior, Biophysics, Neurobiology, Pharmacology, Physiology

Emotional behavior is regulated by a host of chemicals, including neurotransmitters and neuromodulators, acting on specific circuits within the brain. There is strong evidence for the existence of both endogenous stress and anti-stress systems. Chronic exposure to drugs of abuse and stress are hypothesized to modulate the relative balance of activity of these systems within key circuitry in the brain leading to dysregulated emotional behavior. One of the primary focuses of the Kash lab is to understand how chronic drugs of abuse and stress alter neuronal function, focusing on these stress and anti-stress systems in brain circuitry important for anxiety-like behavior. In particular, we are interested in defining alterations in synaptic function, modulation and plasticity using a combination of whole-cell patch-clamp physiology, biochemistry and mouse models.  Current projects are focused on the role of a unique population of dopamine neurons in alcoholism and anxiety.

Kuhlman, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology

RESEARCH INTEREST
Biochemistry, Biophysics, Chemical Biology, Computational Biology, Drug Delivery, Molecular Medicine, Quantitative Biology, Structural Biology

We focus on a variety of design goals including the creation of novel protein-protein interactions, protein structures, vaccine antigens and light activatable protein switches. Central to all of our projects is the Rosetta program for protein modeling. In collaboration with developers from a variety of universities, we are continually adding new features to Rosetta as well as testing it on new problems.

Laederach, Alain
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology

RESEARCH INTEREST
Bioinformatics, Biophysics, Cancer Biology, Molecular Biology, Systems Biology

The Laederach Lab is interested in better understanding the relationship between RNA structure and folding and human disease. We use a combination of computational and experimental approaches to study the process of RNA folding and in the cells. In particular, we develop novel approaches to analyze and interpret chemical and enzymatic mapping data on a genomic scale. We aim to fundamentally understand the role of RNA structure in controlling post-transcriptional regulatory mechanisms, and to interpret structure as a secondary layer of information (http://www.nature.com/nature/journal/v505/n7485/full/505621a.html).  We are particularly interested in how human genetic variation affects RNA regulatory structure. We investigate the relationship between disease-associated Single Nucleotide Polymorphisms occurring in Human UTRs and their effect on RNA structure to determine if they form a RiboSNitch.

Gladfelter, Amy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Cell Biology & Physiology

RESEARCH INTEREST
Biophysics, Cell Biology, Genetics, Microbiology, Microscopy, Quantitative Biology

We study large multinucleate cells such as fungi, muscle and placenta to understand how cells are organized in time and space.  Using quantitative live cell microscopy, biochemical reconstitution and computational approaches we examine how the physical properties of molecules generate spatial patterning of cytosol and scaling of cytoskeleton scaffolds in the cell cycle.