Skip to main content
Filter faculty by: and
Search the faculty research descriptions using keywords or phrases:   

We have several areas of research interest broadly in the area of immunomodulation using micro/nanoparticles and other carrier systems.  This can include development of traditional vaccines, therapeutic autoimmune vaccines and classic drug delivery platforms targeted to bacterial, viral or parasitic host cells.  To this end, we also seek to develop new materials and platforms optimal for use in modulating immune responses as well as developing scalable production of micro/nanoparticles.


We are interested in studying diabetic vasculopathies. Patients with type 2 diabetes mellitus or metabolic syndrome have aggressive forms of vascular disease, possessing a greater likelihood of end-organ ischemia, as well as increased morbidity and mortality following vascular interventions. Our long term research aims to change the way we treat arterial disease in diabetes by:

  • Understanding why arterial disease is more aggressive in diabetic patients, with a focus in redox signaling in the vasculature.
  • Developing targeted systems using nanotechnology to locally deliver therapeutics to the diseased arteries.

Our research focuses on both fundamental and applied study of soft materials and nanomaterials, develop fabrication approaches to enable hybrid integration of multi-materials towards high-performance electronic and photonic systems, innovate new technology that can intelligently immerse electronics and photonics into biological systems, and create new tools and devices to address unmet clinical needs and improve human healthcare. Our lab fosters a collaborative environment that converges expertise/interests from various backgrounds including materials science and engineering, electrical engineering, physics, chemical engineering, mechanical engineering, and biomedical engineering. We provide hands-on learning, enjoy making practical tools, and aspire to transform scientific advancements into societal solutions.


Batrakova, Elena
Website | Email
Publications

What if you can target and deliver a drug directly to the side of disease in the body? It is possible, when you use smart living creatures pro-inflammatory response cells, such as monocytes, T-lymphocytes or dendritic cells. You can load these cells with the drug and inject these carriers into the blood stream. They will migrate to the inflammation site (for example, across the blood brain barrier) and release the drug. Thus, you can reduce the inflammation and protect the cells (for example, neurons) in patients with Parkinson’s and Alzheimer diseases.


Dr. Benhabbour’s academic research focuses on development of novel tunable delivery platforms and polymer-based devices to treat or prevent a disease. Her work combines the elegance of organic and polymer chemistry with the versatility of engineering and formulation development to design and fabricate efficient and translatable nanocarriers and drug delivery systems for cancer treatment and HIV prevention.

Dr. Benhabbour has also Founded her startup company Anelleo, Inc. (AnelleO) in 2016 to develop the first 3D printed intravaginal ring as a platform technology for women’s health.

Current technologies in development in Dr. Benhabbour’s Lab include:
– 3D Printed intravaginal ring technology: A) Multipurpose prevention technology (MPT) for prevention of HIV/STIs and unplanned pregnancy.
– Polymer based ultra-long-acting injectable implant for HIV prevention and treatment.
– Combinatory chitosan/cellulose nanocrystals thermoresponsive hydrogel system: A) Sub-Q or intraosseous injectable for treatment of osteoporosis; B) Bio-ink for 3D bioprinting; C) Scaffold for stem cell delivery (e.g. iNSCs for treatment of post-surgical glioblastoma.
– Mucoadhesive thin film for treatment of vulvodynia.
– Targeted nanoparticles and hydrogel scaffolds for treatment of NSCLC.


The Button lab in the Department of Biochemistry and Biophysics is part of the Marsico Lung Institute. Our lab is actively involved in projects that are designed to define the pathogenesis of muco-obstructive pulmonary disorders and to identify therapies that could be used to improve the quality of life in persons afflicted by these diseases. In particular, our research works to understand the biochemical and biophysical properties of mucin biopolymers, which give airway mucus its characteristic gel-like properties, and how they are altered in diseases such as Asthma, COPD, and cystic fibrosis.


The broad aim of research in the Fenton Laboratory is to develop and evaluate synthetic drug delivery platforms to treat neurodegenerative disorders in the brain using RNA therapeutics. RNA therapeutics represent a particularly promising class of therapeutics for neurodegenerative management given their ability to tune levels of specific protein expression in living systems. For example, protein downregulation can be achieved by administering short interfering RNAs (siRNAs); alternatively, proteins can be upregulated by messenger RNA (mRNA) administration. Despite this promise, fewer than 0.05% of the world’s clinically approved drugs are RNA therapeutics, and their translation to neurodegenerative disorders in the brain warrants further study at the fundamental and clinical levels.

To address these challenges, our group focuses on the discovery and development of molecular carriers and technology platforms to improve the targeting, safety, and efficacy of RNA drugs within target cells. Specifically, our group leverages an interdisciplinary approach to develop lipid nanoparticles (LNP) as well as soft matter hydrogel platforms that can serve as carrier systems and/or drug delivery models for RNA drugs. Further, our group also explores the development of technological platforms to further expand the potential of RNA drugs within resource limited settings. Lastly, given that mRNA drugs can be engineered to encode for virtually any polypeptide or protein based antigen, our group also aims to leverage our platformable LNP technologies for the study and prevention of cancers and infectious disease. In undertaking such an approach, the goal of our research is to equip students with fundamental skillsets for the development of next generation drugs while simultaneously developing clinically-relevant carrier platforms and technologies for the study, prevention, and treatment of human disease.


My lab focuses on developing bioinspired molecular constructs and material platforms that can mimic proteins and be programmed to respond to stimuli resulting from biomolecular recognition. Major efforts are directed to design peptide- and nucleic acid-based scaffolds or injectable nanostructures to create artificial extracellular matrices that can directly signal cells.


My research focus centers on retinal gene/drug therapy using nanotechnologies. My laboratory is interested in developing gene therapies for inherited blinding diseases and eye tumors. We are particularly interested in understanding the gene expression patterns that are regulated by the cis-regulatory elements. We utilize compacted DNA nanoparticles which have the ability to transfer large genetic messages to overcome various technical challenges and to appreciate the translational potential of this technology. This multidimensional technology also facilitated targeted drug delivery. Currently, we are working on the design and development of several specific nano formulations with targeting, bioimaging and controlled release specificities.


Imagine a naturally intelligent therapy that can seek out and destroy cancer cells like no other available treatment.  In the Hingtgen Lab, we are harnessing Nobel Prize-winning advancements to create a new type of anti-cancer treatment: personalized stem cell-based therapies.  We use a patient’s own skin sample and morph it into cells that chase down and kill cancer. We take advantage of a little-known aspect of stem cells- they can home in on cancer by picking up a signal through receptors on the cell surface. All the while, the therapeutic stem cells are pumping out potent anti-cancer drugs that selectively kill any cancer cell nearby while leaving the healthy brain unharmed. Our initial studies focused on aggressive brain cancers, however we quickly expanded our testing to a variety of cancer types. Working at the interface of basic science and human patient testing, our ultimate goal is to translate this novel approach into the clinical setting where it can re-define treatment for cancers that currently have no effective treatment options.


Our lab works with adeno-associated viral vectors for both the characterization of vector and host responses upon transduction and as therapeutic agents for the treatment of genetic diseases.  In particular, we tend to focus on the 145 nucleotide viral inverted terminal repeats of the transgenic genome and their multiple functions including the replication initiation, inherent promoter activity, and stimulation of intra/inter molecular DNA repair pathways.  The modification of the AAV ITRs by synthetic sequences imparts unique functions/activities rendering these synthetic vectors perhaps better suited for therapeutic applications.


Kabanov, Alexander (Sasha)
Website | Email
Publications

In our lab we develop novel polymer based drug delivery systems and nanomedicines incorporating small molecules, DNA and polyptides to treat cancer, neurodegenerative and other CNS-related disorders.


We focus on a variety of design goals including the creation of novel protein-protein interactions, protein structures, vaccine antigens and light activatable protein switches. Central to all of our projects is the Rosetta program for protein modeling. In collaboration with developers from a variety of universities, we are continually adding new features to Rosetta as well as testing it on new problems.


Our dynamic group are broadly involve in three topics: (i) prevention of infectious diseases by harnessing interactions between secreted antibodies and mucus, (ii) immune response to biomaterials, and (iii) targeted delivery of nanomedicine.  Our group was the first to discover that secreted antibodies can interact with mucins to trap pathogens in mucus.  We are now harnessing this approach to engineer improved passive and active immuniation (i.e. vaccines) at mucosal surfaces, as well as understand their interplay with the mucosal microbiome.  We are also studying the adaptive immune response to polymers, including anti-PEG antibodies, and how it might impact the efficacy of PEGylated therapeutics.  Lastly, we are engineering fusion proteins that can guide targeted delivery of nanomedicine to heterogenous tumors and enable personalized medicine.


My research has focused on developing new radio-chemistry, imaging probes, and therapeutic approaches including nanomedicine for various diseases. Most importantly, we have the culture of forming an active collaboration with people in different field. With a cGMP lab located within our facility, we are also experienced on developing lead agents and translate it to clinic.


The Nguyen lab develops the next generation of effective and safe biotherapeutics for life-threatening diseases such as cancer and myocardial infarction. We engineer novel immunomodulatory carriers based on genetically encoded materials and lipids that home to the site of disease, respond to changes in the microenvironment, and effectively deliver nucleic acids and drugs.


Our lab is broadly interested in utilizing high resolution 3D printing to develop novel drug delivery carriers for the treatment of cancer and infectious diseases. Current research interests lay in manufacturing biodegradable porous hydrogel scaffold implants for cell/drug delivery for the treatment of recurrent brain cancer. We are actively investigating biomaterial properties for passive cell/drug loading into scaffolds as well as developing materials and methods to support conjugation strategies for actuated release mechanisms.


We are interested in unraveling the molecular basis for human disease and discover new treatments focused on human and microbial targets. Our work extends from atomic-level studies using structural biology, through chemical biology efforts to identify new drugs, and into cellular, animal and clinical investigations. While we are currently focused on the gut microbiome, past work has examined how drugs are detected and degraded in humans, proteins designed to protect soldiers from chemical weapons, how antibiotic resistance spreads, and novel approaches to treat bacterial infections. The Redinbo Laboratory actively works to increase equity and inclusion in our lab, in science, and in the world. Our lab is centered around collaboration, open communication, and trust. We welcome and support anyone regardless of race, disability, gender identification, sexual orientation, age, financial background, or religion. We aim to: 1) Provide an inclusive, equitable, and encouraging work environment 2) Actively broaden representation in STEM to correct historical opportunity imbalances 3) Respect and support each individual’s needs, decisions, and career goals 4) Celebrate our differences and use them to discover new ways of thinking and to better our science and our community


Dr. Rizvi’s expertise is in imaging and therapeutic applications of light, bioengineered 3D models and animal models for cancer, and targeted drug delivery for inhibition of molecular survival pathways in tumors. His K99/R00 (NCI) develops photodynamic therapy (PDT)-based combinations against molecular pathways that are altered by fluid stress in ovarian cancer. He has co-authored 46 peer-reviewed publications and 5 book chapters with a focus on PDT, biomedical optics, and molecular targeting in cancer.