Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Mackman, Nigel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Cardiovascular Biology, Cell Signaling, Pathology, Translational Medicine

The major focus of Mackman lab is the procoagulant protein tissue factor. This is the primary cellular initiator of blood coagulation. We study its role in hemostasis, thrombosis, inflammation, ischemia-reperfusion injury and tumor growth.  We have generated a number of mouse models expressing different levels of both mouse and human tissue factor. These mice have been used to provide new insights into the role of tissue factor in hemostasis and thrombosis. In 2007, we developed a new assay to measure levels of microparticle tissue factor in plasma. We found that elevated levels of microparticle tissue factor are associated with venous thromboembolism in cancer patients.

Madden, Michael C.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Physiology, Toxicology, Translational Medicine

Exposure to ambient air particulate matter  has been associated with increased human deaths and cardiopulmonary morbidity, such as lung infections and increased asthma symptoms.  I am investigating some types of PM and associated gases  that may be associated with those health effects so  to better regulate or manage the sources of the airborne particles which are identified as playing a role in the adverse health outcomes. I am currently focusing on the effects of diesel exhaust using a variety of approaches ranging from exposing cultured human lung and vascular cells to the exhaust, to studying responses of humans exposed out in traffic.  I am currently designing and implementing testing strategies to assess the toxicity of the future types of vehicular emissions. Additionally some of my research effort attempts to identify what populations are more sensitive to the effects of air pollutants, and the genetic, diet, and environmental reasons behind the increased sensitivity.

Magness, Scott
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Genetics, Molecular Biology, Translational Medicine

The primary focus of my research is to understand the genetic mechanisms underlying stem cell maintenance and differentiation with the goal of translating this information into therapeutic strategies. Using a Sox9EGFP mouse model and FACSorting we are able to specifically enrich for single multipotent intestinal epithelial stem cells that are able to generate mini-guts in a culture system. Our studies are now focused on manipulating, in vitro, the genetics of stem cell behavior through viral gene therapeutics and pharmacologic agents. Additionally, we are developing stem cell transplantation and tissue engineering strategies as therapies for inborn genetic disorders as well as damage and disease of the intestine. Using novel animal models and tissue microarrays from human colon cancers, we are investigating the role of Sox-factors in colorectal cancer.

Margolis, David
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Molecular Biology, Molecular Medicine, Pathogenesis & Infection, Translational Medicine, Virology

The overall goal of our laboratory is to obtain new insights into the host-virus interaction, particularly in HIV infection, and translate discoveries in molecular biology and virology to the clinic to aid in the treatment of HIV infection. A subpopulation of HIV-infected lymphocytes is able to avoid viral or immune cytolysis and return to the resting state. Current work focuses on the molecular mechanisms that control the latent reservoir of HIV infection within resting T cells. We have found that cellular transcription factors widely distributed in lymphocytes can remodel chromatin and maintain quiescence of the HIV genome in resting CD4+ lymphocytes. These studies give insight into the basic molecular mechanisms of eukaryotic gene expression, as well as new therapeutic approaches for HIV infection.

Perou, Charles M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology, Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Genetics, Genomics, Translational Medicine

The focus of my lab is to characterize the biological diversity of human tumors using genomics, genetics, and cell biology, and then to use this information to develop improved treatments that are specific for each tumor subtype and for each patient. A significant contribution of ours towards the goal of personalized medicine has been in the genomic characterization of human breast tumors, which identified the Intrinsic Subtypes of Breast Cancer. We study many human solid tumor disease types using multiple experimental approaches including RNA-sequencing (RNA-seq), DNA exome sequencing, Whole Genome Sequencing, cell/tissue culturing, and Proteomics, with a particular focus on the Basal-like/Triple Negative Breast Cancer subtype. In addition, we are mimicking these human tumor alterations in Genetically Engineered Mouse Models, and using primary tumor Patient-Derived Xenografts, to investigate the efficacy of new drugs and new drug combinations. All of these genomic and genetic studies generate large volumes of data; thus, a significant portion of my lab is devoted to using genomic data and a systems biology approach to create computational predictors of complex cancer phenotypes.

Randell, Scott
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Toxicology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Drug Discovery, Immunology, Molecular Medicine, Pathogenesis & Infection, Physiology, Stem Cells, Toxicology, Translational Medicine

My laboratory research is focused on basic cell biology questions as they apply to clinical lung disease problems. Our main work recently has been contributing to the Cystic Fibrosis (CF) Foundtation Stem Cell Consortium, with a focus on developing cell and gene editing therapies for CF. I contribute to UNC team science efforts on cystic fibrosis, aerodigestive cancers, emerging infectious diseases and inhalation toxicology hazards. I direct a highly respected tissue procurement and cell culture Core providing primary human lung cells and other resources locally, nationally and internationally. I co-direct the Respiratory Block in the UNC Translational Educational Curriculum for medical students and also teach in several graduate level courses.

Shih, Yen-Yu Ian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Neurobiology, Physiology, Structural Biology, Systems Biology, Translational Medicine

Dr. Shih is the Director of Small Animal Magnetic Resonance Imaging (MRI) at the Biomedical Research Imaging Center. His lab has implemented multi-model MRI techniques at high magnetic field to measure cerebral blood oxygenation, blood flow, blood volume, and oxygen metabolism changes in preclinical animal models. Dr. Shih’s lab is also developing simultaneous functional MRI (fMRI) and electrophysiology recording techniques at high spatial resolution to elucidate the pathophysiological mechanisms of neurovascular diseases. They will apply these techniques to (i) explore/validate functional connectivity network and neurovascular coupling in the rodent brain, (ii) study tissue characteristics after stroke, and (iii) investigate deep brain electrical stimulation, optogenetic stimulation, and pharmacogenetic stimulation in normal and Parkinsonian animal models.

Tisch, Roland
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Cell Signaling, Immunology, Pathology, Translational Medicine

Projects involve the study of cellular and molecular events involved in autoimmunity, and development and application of genetic vaccines to prevent and treat autoimmunity and cancer.

Vilen, Barbara
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Cell Signaling, Immunology, Metabolism, Pathogenesis & Infection, Translational Medicine

We are interested in understanding how autoreactive B cells become re-activated to secrete autoantibodies that lead to autoimmune disease.  Our research is focused on understanding how signal transduction through the B cell antigen receptor (BCR) and Toll Like Receptors (TLR) lead to secretion of autoantibodies in Systemic Lupus Erythematosus (SLE).

Wolberg, Alisa
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Biochemistry, Bioinformatics, Cardiovascular Biology, Microscopy, Molecular Medicine, Pathogenesis & Infection, Pathology, Translational Medicine

We investigate mechanisms in blood coagulation and diseases that intersect with abnormal blood biomarkers and function, including cardiovascular disease (heart attack, stroke, deep vein thrombosis, pulmonary embolism), bleeding (hemophilia), inflammation, obesity, and cancer. We also investigate established drugs and new drugs in preclinical development to understand their role in reducing and preventing disease. Our studies use interdisciplinary techniques, including in vitro, ex vivo, and in vivo mouse models and samples from humans in translational studies that span clinic to bench. Our lab emphasizes a culture of diversity, responsibility, independence and collaboration, and shared excitement for scientific discovery. We are located in the UNC Blood Research Center in the newly-renovated Mary Ellen Jones building.