Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Schisler, Jonathan C.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science, Pharmacology

RESEARCH INTEREST
Cardiovascular Biology, Genomics, Metabolism, Neurobiology, Translational Medicine

The Schisler Lab is geared towards understanding and designing therapies for diseases involving proteinopathies- pathologies stemming from protein misfolding, aggregation, and disruption of protein quality control pathways. We focus on cardiovascular diseases including the now more appreciated overlap with neurological diseases such as CHIPopathy (or SCAR16, discovered here in our lab) and polyQ diseases. We use molecular, cellular, and animal-based models often in combination with clinical datasets to help drive our understanding of disease in translation to new therapies.

Cohen, Jessica
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Physiology, Systems Biology, Translational Medicine

The Cohen Lab investigates how functional brain networks in humans interact and reconfigure when confronted with changing cognitive demands, when experiencing transformations across development, and when facing disruptions in healthy functioning due to disease. We are also interested in how this neural flexibility contributes to flexibility in control and the ability to learn, as well as the consequences of dysfunction in this flexibility. We use behavioral, neuroimaging, and clinical approaches taken from neuroscience, psychology, and mathematics to address our research questions.

Arthur, Janelle C.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Immunology, Molecular Medicine, Pathogenesis & Infection, Translational Medicine

The Arthur lab is interested in mechanisms by which inflammation alters the functional capabilities of the microbiota, with the long-term goal of targeting resident microbes as a preventative and therapeutic strategy to lessen inflammation and reduce the risk of colorectal cancer. We utilize a unique and powerful in vivo system – germ-free and gnotobiotic mice – to causally link specific microbes, microbial genes, and microbial metabolites with health and disease in the gut.  We also employ basic immunology and molecular microbiology techniques as well as next generation sequencing and bioinformatics to evaluate these essential host-microbe interactions.