Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Ainslie, Kristy M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Pharmaceutical Sciences

RESEARCH INTEREST
Biomaterials, Drug Delivery, Immunology, Nanomedicine

We have several areas of research interest broadly in the area of immunomodulation using micro/nanoparticles and other carrier systems.  This can include development of traditional vaccines, therapeutic autoimmune vaccines and classic drug delivery platforms targeted to bacterial, viral or parasitic host cells.  To this end, we also seek to develop new materials and platforms optimal for use in modulating immune responses as well as developing scalable production of micro/nanoparticles.

Goonetilleke, Nilu
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Virology

We are a human immunology lab focusing on all aspects of T cell immunobiology in HIV-1 infection. Studies range from basic questions like, ‘What are the determinants of the first T cell response following infection?’ to translational challenges such as ‘What is the best design for a T cell vaccine to either prevent infection or achieve HIV-1 cure?’

Keywords: T cells, HIV-1, Escape, CD8 T cells, Vaccines, Cure, Vaccines

Sheikh, Shehzad Z.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Genomics, Immunology, Translational Medicine

We seek to understand how information is encoded and dynamically utilized in immune cells from healthy and disease prone intestines (The Inflammatory Bowel Diseases: Crohn’s disease and Ulcerative Colitis). Our lab is multi-disciplinary and combines high-throughput genomics with innate immunity and microbiology. We focus specifically on genes that regulate response to the bacteria that normally reside in our intestines. Many of these genes make products that regulate the immune system in the intestine. These products defend the intestine against the attack of foreign materials; such as bacteria that live in the intestine. We use genome-sequencing technology to precisely identify regions throughout the genome that are potential ‘on’ or ‘off’ switches for these genes. There is a fine balance between the genes that produce inflammatory substances that are necessary to kill bacteria and genes that produce anti-inflammatory substances that are important to prevent damage to the intestine. If this balance between inflammatory and anti-inflammatory substance production in the intestine is disrupted, IBD may result. Our lab focuses on understanding how these important controllers of inflammation are turned on and off in IBD. We also study how inflammatory and anti-inflammatory signals impact disease severity, progression and response to therapy in individuals with IBD. This information has the potential to increase our understanding of causes of IBD (personalized medicine) and to contribute to the development of new treatments.

Lazear, Helen
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Molecular Biology, Pathogenesis & Infection, Virology

We use molecular virology approaches and mouse models of infection to understand innate immune mechanisms that control arbovirus pathogenesis (e.g. West Nile, Zika, and La Crosse viruses). Bat flaviviruses have unusual vector/host relationships; understanding the viral and host factors that determine flavivirus host range is important for recognizing potential emerging infections. We are studying the antiviral effects of interferon lambda (IFN-λ) at barrier surfaces, including the blood-brain barrier and the skin. We also use mouse models of atopic dermatitis and herpes simplex virus infection to understand the effects of IFN- λ in the skin.

Pylayeva-Gupta, Yuliya
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Immunology

The goal of my research is to define molecular mechanisms of immune cell co-option by cancer cells, with the hope of identifying novel targets for immune cell reprogramming. Central to our approach is analysis immune cell subtypes in KRas-driven models of pancreatic cancer. We use cell and animals models to study signals important for pro-tumorigenic activity of immune cells, as well as define role of physiologically relevant oncogenic mutations in driving these signals and enabling immune escape.

Arthur, Janelle C.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Immunology, Molecular Medicine, Pathogenesis & Infection, Translational Medicine

The Arthur lab is interested in mechanisms by which inflammation alters the functional capabilities of the microbiota, with the long-term goal of targeting resident microbes as a preventative and therapeutic strategy to lessen inflammation and reduce the risk of colorectal cancer. We utilize a unique and powerful in vivo system – germ-free and gnotobiotic mice – to causally link specific microbes, microbial genes, and microbial metabolites with health and disease in the gut.  We also employ basic immunology and molecular microbiology techniques as well as next generation sequencing and bioinformatics to evaluate these essential host-microbe interactions.

Shiau, Celia
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology, Neuroscience, Toxicology

RESEARCH INTEREST
Bioinformatics, Developmental Biology, Genetics, Immunology, Neurobiology, Systems Biology

The Shiau Lab is integrating in vivo imaging, genetics, genome editing, functional genomics, bioinformatics, and cell biology to uncover and understand innate immune functions in development and disease. From single genes to individual cells to whole organism, we are using the vertebrate zebrafish model to reveal and connect mechanisms at multiple scales. Of particular interest are 1) the genetic regulation of macrophage activation to prevent inappropriate inflammatory and autoimmune conditions, and 2) how different tissue-resident macrophages impact vertebrate development and homeostasis particularly in the brain and gut, such as the role of microglia in brain development and animal behavior.