Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Weerasinghe, Isurika

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cancer Biology, Genetics, Immunology

Whitworth, Chloe

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cancer Biology, Genetics, Immunology

Yu, Caroline

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Toxicology

Zimmerman, Matt

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cancer Biology, Immunology, Molecular Medicine

Clapp, Phil
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Immunology, Physiology, Toxicology, Translational Medicine

My lab in the UNC CEMALB uses translational in vitro and clinical in vivo approaches to investigate how inhaled xenobiotics modify respiratory innate immune responses in people with and without existing lung disease. A central component of my research is the integration of biomedical engineering, additive manufacturing, and advanced cell culture methods to evaluate the health effects of new and emerging tobacco products such as e-cigarettes. I believe the best research is achieved through collaboration across disciplines and welcome interested trainees to contact me to learn more about my lab.

Ferris, Marty
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genetics, Genomics, Immunology, Pathogenesis & Infection, Systems Biology, Virology

In the Ferris lab, we use genetically diverse mouse strains to better understand the role of genetic variation in immune responses to a variety of insults. We then study these variants mechanistically. We also develop genetic and genomic datasets and resources to better identify genetic features associated with these immunological differences.

Baxter, Tori
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Pathology, Translational Medicine, Virology

My research aims to understand the pathogenesis and host immune response to emerging and re-emerging viral infections, including encephalitic alphaviruses such as chikungunya virus and respiratory coronaviruses such as SARS-CoV-2. Other areas of interest include examination of genetic and environmental factors that influence the response to infection and disease outcome, evaluation of vaccines and novel therapeutics against emerging viruses, and development and optimization of animal models of infectious disease.

Rubinsteyn, Alex
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genomics, Immunology, Translational Medicine, Virology

I work on predicting the determinants of adaptive immune responses. Most of my work has focused on T-cell epitope prediction for mutant antigens derived from cancer. I have collaborated closely with clinical groups to translate this work in personalized cancer vaccine trials. More recently I have also been working on joint T-cell and B-cell prediction for viral pathogens. The technologies and techniques applied across all of my projects are at the intersection of computational immunology, genomics, and machine learning.

Moran, Timothy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Immunology, Toxicology, Translational Medicine

Our research focuses on how environmental exposures impact the development of allergic diseases including asthma and food allergy. We are specifically interested in how exposure to environmental pollutants and immunostimulatory molecules (adjuvants) influence allergic sensitization. The goals of our laboratory are to: (1) define the key environmental adjuvants within the indoor exposome that promote allergic sensitization; (2) characterize the molecular mechanisms by which environmental adjuvants and pollutants condition lung antigen presenting cells to induce allergic immune responses; and (3) identify biomarkers of environmental adjuvant exposure that are associated with increased risk for allergic sensitization in children. Through these research endeavors, we hope to identify potential therapeutic targets for environment-mediated allergic diseases, as well as environmental interventions to mitigate the risk for allergic disease development.

Vogt, Matthew
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Molecular Biology, Pathogenesis & Infection, Translational Medicine, Virology

We want to understand why common pediatric respiratory virus infections cause severe disease in some people. Currently we focus on enterovirus D68, which typically causes colds but rarely causes acute flaccid myelitis, a polio-like paralyzing illness in children. We study both the pathogen and the host immune response, as both can contribute to pathogenesis. Projects focus on use of reverse genetic systems to create reporter viruses to infect both human respiratory epithelial cultures and small animal models such as mice. Human monoclonal antibody effects on pathogenesis are also of interest.