Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Kellner, Hope

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cancer Biology, Immunology

“I’m interested in exploring immunotherapy treatments in colon/colorectal cancer and ways to improve them, either through looking at the tumor microenvironment or improving immune cell function. I’d like to do animal model research mainly. “

Bartelt, Luther
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Antibiotics/Antivirals, Bacteriology, Immunology, Metabolism, Microbiome, Model Organisms, Molecular Mechanisms of Disease, Translational Medicine, Virology

Our lab performs translational investigations of nutritional and microbiota determinants of host-pathogen interactions. We use gnotobiotic techniques (eg. germ free) mice to investigate complex microbe-microbe interactions in the context of host malnutrition, a common but poorly understood global health problem. Specific pathogens we model include Giardia (a ubiquitous parasite with unclear mechanisms of pathogenesis) and other intestinal parasites and multi drug resistant Enterobacterales (eg. Klebsiella). We work with several collaborators to translate findings in experimental models to outcomes in human cohorts. Emerging projects include determinants of host immune responses to mucosal viral infections and vaccines (eg. Polio and SARS-CoV-2).

Stanley, Natalie
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Immunology, Medical Imaging, Vaccine Development

We are a computational biology lab jointly located between the department of computer science and the computational medicine program. We develop new methods for automated, efficient, and unbiased analysis of immune profiling data, such as, flow cytometry, mass cytometry, and imaging mass cytometry. Our work specifically seeks to link particular immune cell-types and their functional responses to clinical or experimental phenotypes. Application areas of interest include, vaccine development, T-cell differentiation and designing more effective immunotherapies, neurodegenerative diseases, sexually transmitted diseases, and pregnancy. To design scalable and automated tools for these data, we develop and apply new methods using machine learning and graph signal processing.

Good, Misty
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Pathobiology & Translational Science

RESEARCH INTEREST
Cell Biology, Developmental Biology, Gastrointestinal Biology, Human Subjects Research, Immunology, Molecular Mechanisms of Disease, Pathogenesis & Infection, Stem Cells

The Good Laboratory is focused on the cellular and molecular mechanisms involved in the pathogenesis of a devastating intestinal disease primarily affecting premature infants called necrotizing enterocolitis (NEC). The long-term goal of the Good Lab is to understand the signaling pathways regulating the uncontrolled immune response in NEC and how these responses can be prevented through dietary modifications or targeted intestinal epithelial therapies. Her basic and translational research utilizes a bench-to-bedside approach with multiple cutting-edge techniques. In her pre-clinical studies, their team utilizes a humanized neonatal mouse model of NEC to understand the signaling pathways and immune cell responses involved in NEC development. Specifically, the laboratory interrogates ways to modulate the immune response, epithelial cell and stem cell regeneration as well as early microbial colonization during NEC. In the clinical component of her research program, Dr. Good leads a large multi-center NEC biorepository for the dedicated pursuit of molecular indicators of disease and to gain greater pathophysiologic insights during NEC in humans. Dr. Good also developed a premature infant intestine-on-a-chip model to study NEC and provide a personalized medicine approach to test new therapeutics. Her laboratory is currently funded with multiple NIH R01 grants and has previously received K08 and R03 funding as well as awards from the March of Dimes, the Gerber Foundation and the NEC Society.

Perry, Jillian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Biomaterials, Drug Delivery, Immunology, Nanomedicine, Translational Medicine

Our lab is broadly interested in utilizing high resolution 3D printing to develop novel drug delivery carriers for the treatment of cancer and infectious diseases. Current research interests lay in manufacturing biodegradable porous hydrogel scaffold implants for cell/drug delivery for the treatment of recurrent brain cancer. We are actively investigating biomaterial properties for passive cell/drug loading into scaffolds as well as developing materials and methods to support conjugation strategies for actuated release mechanisms.

Fedoriw, Yuri
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Immunology, Pathology, Translational Medicine

Our research interests focus on the immunologic and genetic mechanisms of lymphomagenesis, particularly in the setting of HIV infection. While hematologic malignancies and lymphoproliferative disorders in sub-Saharan Africa (SSA) arise under intrinsic and extrinsic pressures very different from those in the United States, comprehensive analyses of these diseases have not been performed. We use advanced sequencing, immunophenotypic and cellular analyses to address gaps in our understanding of lymphomagenesis and tumor microenvironment in the context of HIV-associated immune dysregulation, with the goal of translation to clinical care and future clinical trials.

Thurlow, Lance

EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Cell Signaling, Immunology, Metabolism, Pathogenesis & Infection

By 2035, more than 500 million people worldwide will be diagnosed with diabetes. Individuals with diabetes are prone to frequent and invasive infections that commonly manifest as skin and soft tissue infections (SSTIs). Staphylococcus aureus is the most commonly isolated pathogen from diabetic SSTI. S. aureus is a problematic pathogen that is responsible for tens of thousands of invasive infections and deaths annually in the US. Most S. aureus infections manifest as skin and soft tissue infections (SSTIs) that are usually self-resolving. However, in patients with comorbidities, particularly diabetes, S. aureus SSTIs can disseminate resulting in systemic disease including osteomyelitis, endocarditis and sepsis. The goal of my research is to understand the complex interactions between bacterial pathogens and the host innate immune response with focus on S. aureus and invasive infections associated with diabetes. My research is roughly divided into two project areas in order to understand the contributions of the pathogen and the host response to invasive infections associated with diabetes. Project 1: Defining mechanisms of immune suppression in diabetic infections. Project 2: Determine the role of bacterial metabolism in virulence potential and pathogenesis.

Miller, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Genetics, Immunology, Systems Biology, Translational Medicine

The Miller lab is working to improve the efficacy of immunotherapy to treat cancer. We aim to develop personalized immunotherapy approaches based on a patient’s unique cancer mutations. We have a particular interest in myeloid cells, a poorly understood group of innate immune cells that regulate nearly all aspects of the immune response. Using patient samples, mouse models, single-cell profiling, and functional genomics approaches, we are working to identify novel myeloid-directed therapies that allow us to overcome resistance and successfully treat more patients.

Thaxton, Jessica
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Immunology, Metabolism

The Thaxton laboratory studies the intersection of stress and metabolism in immune cells for applications in cancer immunotherapy. Our pursuits center around the biology of the endoplasmic reticulum (ER). We aim to define how stress on the ER defines changes in protein homeostasis, metabolic fate, and antitumor efficacy of immune subsets in human tumors. In order to pursue our goals we collaborate vigorously with clinicians, creating a highly translational platform to expand our discoveries. Moreover, we design unique mouse models and use innovate technologies such as metabolic tracing, RNA-sequencing, and spectral flow cytometry to study how the stress of solid tumors impacts immune function. Ultimately, we aim to discover new ways to restore immune function in solid tumors to offer unique therapies for cancer patients.

Mock, Jason
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Pathobiology & Translational Science

RESEARCH INTEREST
Immunology, Physiology, Translational Medicine

Our research interests focus on investigating the reparative processes critical to the resolution of acute lung injury. Acute events such as pneumonia, inhalational injury, trauma, or sepsis often damage the lung, impeding its primary function, gas exchange. The clinical syndrome these events can lead to is termed Acute Respiratory Distress Syndrome (ARDS). ARDS is a common pulmonary disease often seen and treated in intensive care units. Despite decades of research into the pathogenesis underlying the development of ARDS, mortality remains high. Our laboratory has built upon exciting observations by our group and others on the importance of how the lung repairs after injury. One type of white blood cell, the Foxp3+ regulatory T cell (Treg), appears essential in resolving ARDS in experimental models of lung injury–through modulating immune responses and enhancing alveolar epithelial proliferation and tissue repair. Importantly, Tregs are present in patients with ARDS, and our lab has found that subsets of Tregs may play a role in recovery from ARDS.