Research Interest: Organismal Biology
Name | PhD Program | Research Interest | Publications |
---|---|---|
Graves, Christina WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Fundamentally, our research is focused on how the nervous and immune systems are developmentally educated by infectious and non-infectious stressors across the “gum-to-gut” axis. One current major focus of the lab is to elucidate how early life stress impacts the developing gut and dentition using zebrafish as an ideal — and translational — model organism. We utilize a combination of advanced imaging, next-generation sequencing, and genetic approaches to achieve a greater understanding of how early life events dictate health outcomes across the lifespan and generations. In addition to these primary research interests, we maintain active collaborations with other groups within the Adams School of Dentistry and across campus. |
Shpargel, Karl WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our laboratory studies the coordination of histone-modifying enzymes in regulating chromatin structure, enhancer activation, and transcription. We utilize mouse genetics and cell culture model systems to study the mechanisms of enhancer activation in neural crest cell epigenetics, craniofacial development, and altered enhancer regulation in cancer. This is accomplished through a variety of techniques including mouse mutagenesis, fluorescent reporters to isolate primary cells of interest, low cell number genomics, and proteomic approaches. |
Matute, Daniel WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research program studies how species form. We use a combination of approaches that range from field biology, behavior, and computational biology. |
Griffith, Boyce WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My group develops and deploys computational tools to predict physiological function and dysfunction. We are interested in a range of applications in medicine and biology, but our primary focus is the cardiovascular system. My group is actively developing fluid-structure interaction (FSI) models of the heart, arteries, and veins, and of cardiovascular medical devices, including bioprosthetic heart valves, ventricular assist devices, and inferior vena cava filters. We are also validating these models using in vitro and in vivo approaches. We also model cardiac electrophysiology and electro-mechanical coupling, with a focus on atrial fibrillation (AF), and aim to develop mechanistically detailed descriptions of thrombosis in AF. This work is carried out in collaboration with clinicians, engineers, computer and computational scientists, and mathematical scientists in academia, industry, and regulatory agencies. |
Hedrick, Tyson WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Research in my laboratory focuses on how animals produce and control movement, with a particular interest in animal flight. We use both computational and experimental techniques to examine how organismal components such as the neuromuscular and neurosensory systems interact with the external environment via mechanics and aerodynamics to produce movement that is both accurate and robust. Keywords: biomechanics, flight, avian, insect, neural control, muscle, locomotion, computational modeling. |
Jones, Corbin WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The goal of my research is to identify, clone, and characterize the evolution of genes underlying natural adaptations in order to determine the types of genes involved, how many and what types of genetic changes occurred, and the evolutionary history of these changes. Specific areas of research include: 1) Genetic analyses of adaptations and interspecific differences in Drosophila, 2) Molecular evolution and population genetics of new genes and 3) Evolutionary analysis of QTL and genomic data. |
Mitchell, Charles WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My work focuses on the role of plant pathogens in (A) controlling or facilitating biological invasions by plants, (B) structuring plant communities, and (C) modulating the effects of global change on terrestrial ecosystems. My group works on viruses, bacteria, and fungi that infect wild plants, chiefly grasses and other herbaceous species. Ultimately, I am interested in the implications of these processes for the sustainable provisioning of ecosystem services and for the conservation of biological diversity. |
Pardo-Manuel de Villena, Fernando WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Non-Mendelian genetics including, meiotic drive, parent-of-orifin effects and allelic exclusion. |
Sullivan, Patrick WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
I study complex traits using linkage, association, and genetic epidemiological approaches. Disorders include schizophrenia (etiology and pharmacogenetics), smoking behavior, and chronic fatigue. |
Willett, Christopher WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My lab concentrates on studying the molecular genetic basis of the evolutionary processes of adaptation and speciation. The questions we ask are what are the sequence changes that lead to variation between species and diversity within species, and what can these changes tell us about the processes that lead to their evolution. We use a number of different techniques to answer these questions, including molecular biology, sequence analyses (i.e. population genetics and molecular evolution techniques), physiological studies, and examinations of whole-organism fitness. Currently work in the lab has focused on a intertidal copepod species that is an excellent model for the initial stages of speciation (and also provides opportunities to study how populations of this species adapt to their physical environment). |