Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Mei, Hua
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Drug Discovery, Molecular Biology, Translational Medicine

We focus on the translational potential and clinical impact of biomedical research. Our general research interest is to reveal the mechanisms of eye diseases using animal and other research models. One current project is to investigate the markers of limbal stem cells using transgenic mice. The lack of limbal stem cell marker has been a long-term bottleneck in the diagnosis and treatment of limbal stem cell deficiency, which leads to a loss of corneal epithelial integrity and damaged limbal barrier functions with the symptoms of persistent corneal epithelial defects, pain, and blurred vision. The research results will directly impact on the early-stage diagnosis of the disease and the quality control of ex vivo expanded limbal stem cells for transplantation.

O'Brien, Lori
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Genomics, Physiology, Translational Medicine

Modern Technologies from next-gen sequencing to high resolution imaging have advanced our knowledge of kidney development, function, and disease. We are among the pioneers utilizing techniques such as CHIP-seq, RNA-seq, modern genome editing, and imaging to understand how regulatory programs control progenitor populations during kidney development. Our goal is to understand how these programs contribute to progenitor specification and maintenance, and how they are altered during disease and aging. Our ultimate goal is translational applications of our research to develop new therapeutics and regenerative strategies.

Fitting, Sylvia
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Cell Biology, Neurobiology, Pathogenesis & Infection, Pharmacology

Our lab studies the underlying structural and functional substrates of behavior in disease using rodent models. Specifically our goal is to develop a better understanding of how cellular function in the CNS is affected by drug-related substances (opioids, cannabinoids) in the context of HIV infection. That includes the study of how drugs of abuse exacerbate the pathogenesis of neuroAIDS but also the study of targets within the endocannabinoid system for the potential treatment of HIV. We use various in vivo and in vitro techniques, including primary cell culture models, behavioral conditioning tasks, live cell imaging, and electrophysiology.

Legant, Wesley R.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Biomaterials, Cancer Biology, Cell Biology, Cell Signaling, Computational Biology

Life is animate and three-dimensional.  Our lab develops tools to better understand living specimens at single molecule, cellular, and tissue level length scales.  Our current efforts comprise three synergistic research areas: 1) development and application of novel fluorescent imaging modalities including: super resolution, light sheet, and adaptive optical microscopy 2) investigation of how mechanical forces and cytoskeletal dynamics drive cancer cell migration through complex three-dimensional environments, and 3) generation of microfabricated platforms to precisely control the cellular microenvironment for tissue engineering and drug screening.

Ikonomidis, John S.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology

RESEARCH INTEREST
Biochemistry, Cardiovascular Biology, Cell Biology, Cell Signaling, Translational Medicine

My research focus pertains to vascular remodeling as it relates to the pathogenesis and progression of thoracic aortic aneurysms. Using murine and porcine models, as well as human aneurysm tissue samples, we study proteinase and signaling biology with a view towards defining novel modalities targets for diagnosis, tracking, risk stratification and non-surgical treatment of this devastating disease.

Williams, Scott E.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Oral & Craniofacial Biomedicine, Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Cell Biology, Developmental Biology, Genetics, Pathology, Stem Cells

Interest areas: Developmental Biology, Cell Biology, Cancer Biology, Stem Cells, Genetics

PhD programs: Pathobiology & Translational Sciences, Genetics & Molecular Biology, Cell Biology & Physiology, Oral Biology, Biology

Tissue development and homeostasis depend on the precise coordination of self-renewal and differentiation programs. A critical point of regulation of this balance is at the level of cell division. In the Williams lab, we are interested in stratified epithelial development, stem cells, and cancer, with a particular interest in how oriented cell divisions contribute to these processes. Asymmetric cell divisions maintain a stable pool of stem cells that can be used to sustain tissue growth, or mobilized in response to injury. However, dysregulation of this machinery can lead to cancer, particularly in epithelia where tissue turnover is rapid and continuous. Using the mouse epidermis and oral epithelia as model systems, we utilize cell biological, developmental and genetic approaches to study the molecular control of oriented cell divisions and mitotic spindle positioning, and how division orientation impacts cell fate choices in development, homeostasis, injury, and disease.

Williams, Carmen J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Developmental Biology, Toxicology, Translational Medicine

Reproductive biology of early mammalian embryogenesis including gametogenesis, fertilization, and preimplantation embryo development. Effects of environmental disrupting chemicals on female reproductive tract development and function, with a focus on epigenetic alterations.

Liu, Zhi
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Biochemistry, Cell Biology, Cell Signaling, Immunology, Pathogenesis & Infection

Biochemistry, cell biology, and immunology of skin, immunopathogenesis of autoimmune and inflammatory skin blistering diseases.

Liu, Pengda
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Cell Signaling, Drug Discovery

If you are interested in developing new biochemical/molecular techniques/tools to advance our understanding of biology, and if you are interested in signal transduction pathway analyses and identification of cancer biomarkers, our research group may help you to achieve your goals, as we have the same dreams. We are especially interested in deciphering the molecular mechanisms underlying aberrant signaling events that contribute to tumorigenesis, mediated through protein modifications and protein-protein interactions. Understanding these events may lead to identification of novel drug targets and provide new treatment strategies to combat human cancer.

Liu, Jiandong
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Cell Biology, Cell Signaling, Developmental Biology, Genetics

Congenital heart diseases are one of the most common birth defects in humans, and these arise from developmental defects during embryogenesis.  Many of these diseases have a genetic component, but they might also be affected by environmental factors such as mechanical forces. The Liu Lab combines genetics, molecular and cell biology to study cardiac development and function, focusing on the molecular mechanisms that link mechanical forces and genetic factors to the morphogenesis of the heart.  Our studies using zebrafish as a model system serve as the basic foundation to address the key questions in cardiac development and function, and could provide novel therapeutic interventions for cardiac diseases.