Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Tarran, Robert
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Pathology, Physiology

A critical component of airways innate defense is the thin liquid layer lining airway surfaces, the periciliary liquid (PCL), that provides a low viscosity solution for ciliary beating and acts a lubricant layer for mucus transport. Normal airways appear to be able to sense the PCL volume and adjust ion channel activity accordingly. The long term goal of this laboratory is to understand how homeostasis of PCL volume occurs in airway epithelia under normal and pathophysiological conditions. Currently, research in the Tarran lab is focused on three main areas: 1) Regulation of epithelial cell function by the extracellular environment, 2) Gender differences in cystic fibrosis lung disease and 3) The effects of cigarette smoke on epithelial airway ion transport. We utilize cell biological and biochemical techniques coupled with in vivo translational approaches to address these questions.

Pearce, Ken`
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences, Toxicology

RESEARCH INTEREST
Biochemistry, Biophysics, Cell Biology, Chemical Biology, Drug Discovery

We are a comprehensive, collaborative group with a primary focus on lead and early drug discovery for oncology and epigenetic targets and pathways. Our research applies reagent production, primary assay development, high-throughput screening, biophysics, and exploratory cell biology to enable small molecule drug discovery programs in solid partnership with collaborators, both within the Center for Integrative Chemical Biology and Drug Discovery and across the UNC campus. We apply small molecule hit discovery to highly validated biochemical targets as well as phenotypic cell-based assays. Our methods include various fluorescence-based readouts and high content microscopy. Examples of some of our collaborative small molecule discovery programs include, inhibition of chromatin methyl-lysine reader proteins, hit discovery for small GTPases such as K-Ras and Gaq, inhibitors of inositol phosphate kinases, inhibitors of protein-protein interactions involving CIB1 and MAGE proteins, and several cell-based efforts including a screen for compounds that enhance c-Myc degradation in pancreatic cancer cells. In addition, we are developing a DNA-encoded library approach for hit discovery to complement traditional high-throughput screening. Our ultimate goal is discovery of new chemical probes and medicines for exploratory biology and unmet medical needs, respectively.

Hahn, Klaus
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Neuroscience, Pharmacology

RESEARCH INTEREST
Biochemistry, Biophysics, Cell Biology, Cell Signaling, Chemical Biology, Computational Biology, Systems Biology

Dynamic control of signaling networks in living cells; Rho family and MAPK networks in motility and network plasticity; new tools to study protein activity in living cells (i.e., biosensors, protein photomanipulation, microscopy). Member of the Molecular & Cellular Biophysics Training Program and the Medicinal Chemistry Program.

Gupton, Stephanie
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Cell Signaling, Genetics, Neurobiology, Stem Cells

During cell shape change and motility, a dynamic cytoskeleton produces the force to initiate plasma membrane protrusion, while vesicle trafficking supplies phospholipids and membrane proteins to the expanding plasma membrane. Extracellular cues activate intracellular signaling pathways to elicit specific cell shape changes and motility responses through coordinated cytoskeletal dynamics and vesicle trafficking. In my lab we are investigating the role of two ubiquitin ligases, TRIM9 and TRIM67, in the cell shape changes that occur during neuronal development. We utilize a variety techniques including high resolution live cell microscopy, gene disruption, mouse models, and biochemistry to understand the complex coordination of cytoskeletal dynamics and membrane trafficking driving neuronal shape change and growth cone motility in primary neurons.

Graves, Lee M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Biochemistry, Cell Biology, Molecular Biology, Pharmacology, Physiology

Our lab is studying the role of mitogen and stress-activated protein kinases to regulate key aspects of cell metabolism. We are also studying signalling by tyrosine kinases in response to toxicological agents or cell stress.

Goldstein, Bob
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Biophysics, Cell Biology, Developmental Biology, Genetics, Molecular Biology

We address fundamental issues in cell and developmental biology, issues such as how cells move to specific positions, how the orientations of cell divisions are determined, how the mitotic spindle is positioned in cells, and how cells respond to cell signaling – for example Wnt signaling, which is important in development and in cancer biology. We are committed to applying whatever methods are required to answer important questions. As a result, we use diverse methods, including methods of cell biology, developmental biology, forward and reverse genetics including RNAi, biochemistry, biophysics, mathematical and computational modeling and simulations, molecular biology, and live microscopy of cells and of the dynamic components of the cytoskeleton – microfilaments, microtubules, and motor proteins. Most experiments in the lab use C. elegans embryos, and we have also used Drosophila and Xenopus recently. C. elegans is valuable as a model system because of the possibility of combining the diverse techniques above to answer a wide array of interesting questions. We also have a long-term project to develop a new model system for studying how biological materials can survive extremes, using little-studied organisms called tardigrades. Rotating graduate students learn to master existing techniques, and students who join the lab typically grow their rotation projects into larger, long term projects, and/or develop creative, new projects.

Falk, Ronald J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pathobiology & Translational Science

RESEARCH INTEREST
Cell Biology, Pathology, Physiology, Translational Medicine

As the Director of the UNC Kidney Center, the scope of Dr. Falk’s research interests spans many disciplines, including molecular biology, immunology, genetics, pathology, cell biology, protein chemistry, epidemiology, pharmacokinetics and biostatistics. Dr. Falk is recognized world wide as a leader in research on kidney diseases related to autoimmune responses. He works closely with the basic research scientists within the UNC Kidney Center, including Dr. Gloria Preston, thus this research program provides an environment for Translational Research within the UNC Kidney Center.

Emanuele, Michael
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Molecular Biology, Systems Biology

Our lab applies cutting edge genetic and proteomic technologies to unravel dynamic signaling networks involved in cell proliferation, genome stability and cancer. These powerful technologies are used to systematically interrogate the ubiquitin proteasome system (UPS), and allow us to gain a systems level understanding of the cell at unparalleled depth. We are focused on UPS signaling in cell cycle progression and genome stability, since these pathways are universally perturbed in cancer.

Duronio, Bob
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Developmental Biology, Genetics, Genomics, Molecular Biology

My lab studies how cell proliferation is controlled during animal development, with a focus on the genetic and epigenetic mechanisms that regulate DNA replication and gene expression throughout the cell cycle. Many of the genes and signaling pathways that we study are frequently mutated in human cancers. Our current research efforts are divided into three areas:  1) Plasticity of cell cycle control during development  2) Histone mRNA biosynthesis and nuclear body function  3) Epigenetic control of genome replication and function.

Doerschuk, Claire M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cell Biology, Cell Signaling, Immunology, Molecular Medicine, Pathology

We study host defense mechanisms in the lungs, particularly the inflammatory and innate immune processes important in the pathogenesis and course of bacterial pneumonia, acute lung injury/acute respiratory distress syndrome, and cigarette smoke-associated lung disease. Basic and translational studies address mechanisms of host defense, including recruitment and function of leukocytes, vascular permeability leading to edema, bacterial clearance and resolution.  Cell signaling pathways initiated by binding of leukocyte-endothelial cell adhesion molecules and molecular mechanisms underlying the functions of neutrophils are two particular areas.