Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Samet, James M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Immunology, Toxicology

Our laboratory is focused on the cellular and molecular mechanisms that control  inflammatory and adaptive responses induced by inhalation of ambient air pollutants. Projects focus on early events that result in the disregulation of signaling processes that regulate gene expression, specifically oxidative effects that disrupt signaling quiescence in human lung cells. Approaches include live-cell imaging of human lung cells exposed in vitro and ex-vivo and characterization of oxidative protein modifications.

Sancar, Aziz
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Genetics & Molecular Biology, Toxicology

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Molecular Biology

We have three main areas of research focus: (1) Nucleotide excision repair: The only known mechanism for the removal of bulky DNA adducts in humans. (2) DNA damage checkpoints:  Biochemical pathways that transiently block cell cycle progression while DNA contains damage.  (3) Circadian rhythm:  The oscillations in biochemical, physiological and behavioral processes that occur with the periodicity of about 24 hours.

Styblo, Miroslav
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Nutrition, Toxicology

RESEARCH INTEREST
Physiology, Toxicology

Dr. Styblo is a biochemist with background in nutritional biochemistry and biochemical toxicology. His research focuses on topics that require expertise in both nutrition and toxicology and typically involve a translational or interdisciplinary approach. His current research projects examine mechanisms and etiology of diseases associated with exposures to environmental toxins with main focus on cancer and diabetes associated with exposure to arsenic (a common drinking water contaminant), and on the role of diet or specific nutrients in prevention of these diseases.

Tropsha, Alexander
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Neuroscience, Pharmaceutical Sciences, Toxicology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Molecular Medicine, Structural Biology, Toxicology

The major area of our research is Biomolecular Informatics, which implies understanding relationships between molecular structures (organic or macromolecular) and their properties (activity or function). We are interested in building validated and predictive quantitative models that relate molecular structure and its biological function using statistical and machine learning approaches. We exploit these models to make verifiable predictions about putative function of untested molecules.

Vaziri, Cyrus
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pathobiology & Translational Science, Toxicology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Molecular Biology, Toxicology

Our broad long-term goal is to understand how mammalian cells maintain ordered control of DNA replication during normal passage through an unperturbed cell cycle, and in response to genotoxins (DNA-damaging agents).  DNA synthesis is a fundamental process for normal growth and development and accurate replication of DNA is crucial for maintenance of genomic stability.  Many cancers display defects in regulation of DNA synthesis and it is important to understand the molecular basis for aberrant DNA replication in tumors.  Moreover, since many chemotherapies specifically target cells in S-phase, a more detailed understanding of DNA replication could allow the rational design of novel cancer therapeutics.  Our lab focuses on three main aspects of DNA replication control:  (1) The S-phase checkpoint, (2) Trans-Lesion Synthesis (TLS) and (3) Re-replication.

Watkins, Paul
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Physiology, Toxicology

Mechanistic toxicology, hepato-toxicology, research translation, biomarkers

Weissman, Bernard E.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pathobiology & Translational Science, Toxicology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Genetics, Molecular Biology

How the loss of different components of the SWI/SNF complex contributes to neoplastic transformation remains an open and important question. My laboratory concentrates on addressing this question by the combined use of biological, biochemical and mouse models for SWI/SNF complex function.

Fessler, Michael B.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Signaling, Immunology, Pathogenesis & Infection, Translational Medicine

Fessler laboratory investigates mechanisms of the innate immune response, in particular Toll like Receptor (TLR) pathways and how they regulate inflammatory and host defense responses in the lung.  To this end, we use both in vitro (macrophage cultures) and in vivo (mouse models of acute lung injury and pneumonia) model systems, and also use translational approaches (e.g., studies using human peripheral blood leukocytes and alveolar macrophages).  An area of particular interest within the laboratory is defining how cholesterol trafficking and dyslipidemia innate immunity.

Shiau, Celia
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology, Neuroscience, Toxicology

RESEARCH INTEREST
Bioinformatics, Developmental Biology, Genetics, Immunology, Neurobiology, Systems Biology

The Shiau Lab is integrating in vivo imaging, genetics, genome editing, functional genomics, bioinformatics, and cell biology to uncover and understand innate immune functions in development and disease. From single genes to individual cells to whole organism, we are using the vertebrate zebrafish model to reveal and connect mechanisms at multiple scales. Of particular interest are 1) the genetic regulation of macrophage activation to prevent inappropriate inflammatory and autoimmune conditions, and 2) how different tissue-resident macrophages impact vertebrate development and homeostasis particularly in the brain and gut, such as the role of microglia in brain development and animal behavior.