PhD Program: Pathobiology & Translational Science
Name | PhD Program | Research Interest | Publications |
---|---|---|
Nichols, Timothy C. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research interests include the role of von Willebrand factor in thrombosis and atherosclerosis. Our current lab work focuses on the molecular biology of porcine von Willebrand factor. |
Perou, Charles M. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The focus of my lab is to characterize the biological diversity of human tumors using genomics, genetics, and cell biology, and then to use this information to develop improved treatments that are specific for each tumor subtype and for each patient. A significant contribution of ours towards the goal of personalized medicine has been in the genomic characterization of human breast tumors, which identified the Intrinsic Subtypes of Breast Cancer. We study many human solid tumor disease types using multiple experimental approaches including RNA-sequencing (RNA-seq), DNA exome sequencing, Whole Genome Sequencing, cell/tissue culturing, and Proteomics, with a particular focus on the Basal-like/Triple Negative Breast Cancer subtype. In addition, we are mimicking these human tumor alterations in Genetically Engineered Mouse Models, and using primary tumor Patient-Derived Xenografts, to investigate the efficacy of new drugs and new drug combinations. All of these genomic and genetic studies generate large volumes of data; thus, a significant portion of my lab is devoted to using genomic data and a systems biology approach to create computational predictors of complex cancer phenotypes. |
Qian, Li WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our laboratory is interested in developing innovative approaches to regenerate or repair an injured heart. Our goal is to understand the molecular basis of cardiomyocyte specification and maturation and apply this knowledge to improve efficiency and clinical applicability of cellular reprogramming in heart disease. To achieve these goals, we utilize in vivo modeling of cardiac disease in the mouse, including myocardial infarction (MI), cardiac hypertrophy, chronic heart failure and congenital heart disease (CHD). In addition, we take advantage of traditional mouse genetics, cell and molecular biology, biochemistry and newly developed reprogramming technologies (iPSC and iCM) to investigate the fundamental events underlying the progression of various cardiovascular diseases as well as to discover the basic mechanisms of cell reprogramming. |
Redinbo, Matt WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We are interested in unraveling the molecular basis for human disease and discover new treatments focused on human and microbial targets. Our work extends from atomic-level studies using structural biology, through chemical biology efforts to identify new drugs, and into cellular, animal and clinical investigations. While we are currently focused on the gut microbiome, past work has examined how drugs are detected and degraded in humans, proteins designed to protect soldiers from chemical weapons, how antibiotic resistance spreads, and novel approaches to treat bacterial infections. The Redinbo Laboratory actively works to increase equity and inclusion in our lab, in science, and in the world. Our lab is centered around collaboration, open communication, and trust. We welcome and support anyone regardless of race, disability, gender identification, sexual orientation, age, financial background, or religion. We aim to: 1) Provide an inclusive, equitable, and encouraging work environment 2) Actively broaden representation in STEM to correct historical opportunity imbalances 3) Respect and support each individual’s needs, decisions, and career goals 4) Celebrate our differences and use them to discover new ways of thinking and to better our science and our community |
Taylor, Joan M. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The goal of our research is to identify signaling mechanisms that contribute to normal and pathophysiological cell growth in the cardiovascular system. We study cardiac and vascular development as well as heart failure and atherosclerosis. |
Vaziri, Cyrus WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our broad long-term goal is to understand how mammalian cells maintain ordered control of DNA replication during normal passage through an unperturbed cell cycle, and in response to genotoxins (DNA-damaging agents). DNA synthesis is a fundamental process for normal growth and development and accurate replication of DNA is crucial for maintenance of genomic stability. Many cancers display defects in regulation of DNA synthesis and it is important to understand the molecular basis for aberrant DNA replication in tumors. Moreover, since many chemotherapies specifically target cells in S-phase, a more detailed understanding of DNA replication could allow the rational design of novel cancer therapeutics. Our lab focuses on three main aspects of DNA replication control: (1) The S-phase checkpoint, (2) Trans-Lesion Synthesis (TLS) and (3) Re-replication. |
Weissman, Bernard E. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
How the loss of different components of the SWI/SNF complex contributes to neoplastic transformation remains an open and important question. My laboratory concentrates on addressing this question by the combined use of biological, biochemical and mouse models for SWI/SNF complex function. |
Wolberg, Alisa WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We investigate mechanisms in blood coagulation and diseases that intersect with abnormal blood biomarkers and function, including cardiovascular disease (heart attack, stroke, deep vein thrombosis, pulmonary embolism), bleeding (hemophilia), inflammation, obesity, and cancer. We also investigate established drugs and new drugs in preclinical development to understand their role in reducing and preventing disease. Our studies use interdisciplinary techniques, including in vitro, ex vivo, and in vivo mouse models and samples from humans in translational studies that span clinic to bench. Our lab emphasizes a culture of diversity, responsibility, independence and collaboration, and shared excitement for scientific discovery. We are located in the UNC Blood Research Center in the newly-renovated Mary Ellen Jones building. |
Berg, Jonathan WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research group is broadly interested in the application of sequencing technologies in medical genetics and genomics, using a combination of wet lab and computational approaches. As a clinician, I am actively involved in the care of patients with hereditary disorders, and the research questions that my group investigates have direct relevance to patient care. One project uses genome sequencing in families with likely hereditary cancer susceptibility in order to identify novel genes that may be involved in monogenic forms of cancer predisposition. Another major avenue of investigation examines the use of genome-scale sequencing in clinical medicine, ranging from diagnostic testing to newborn screening, to screening in healthy adults. |
Pecot, Chad Victor WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Pecot Lab: Therapeutic RNAi to Teach Cancer how to “Heal” and Block Metastatic Biology Synopsis: The Pecot lab is looking for eager, self-motivated students to join us in tackling the biggest problem in oncology, metastases. An estimated 90% of cancer patients die because of metastases. However, the fundamental underpinnings of what enables metastases to occur are poorly understood. The Pecot lab takes a 3-pronged approach to tackling this problem: 1) By studying the tumor microenvironment (TME), several projects are studying how cancers can be taught to “heal” themselves, 2) By studying how cancers manipulate non-coding RNAs (micro-RNAs, circle RNAs, snoRNAs, etc) to promote their metastatic spread, and 3) We are investigating several ways to develop and implement therapeutic RNA interference (RNAi) to tackle cancer-relevant pathways that are traditionally regarded as “undruggable”. Students joining the lab will be immersed in the development of novel metastatic models, modeling and studying the TME both in vitro and in vivo, using bioinformatic approaches to uncover mechanistic “roots”, and implementation of therapeutic approaches |