Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Cummins, Kit

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Developmental Biology, Genetics, Molecular Biology

Clough, Katie

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Developmental Biology, Neurobiology, Toxicology

Avenbuan, Oyemwenosa Nosa

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Developmental Biology, Toxicology, Translational Medicine

Jacox, Laura
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Oral & Craniofacial Biomedicine, Pathobiology & Translational Science

RESEARCH INTEREST
Behavior, Developmental Biology, Molecular Biology, Pathology, Translational Medicine

The Jacox Lab aims to improve patient care and outcomes in oral health. This goal takes shape via several tracks of interdisciplinary human studies:

-A primary focus of the lab has been on outcomes of jaw surgery patients, who suffer from Dentofacial Disharmonies (DFD). Patients with DFD have severe skeletal disproportions with underbites or open bites, necessitating orthodontics and jaw surgery for full correction. Roughly 80% of our patients with DFD exhibit speech distortions, compared to 5% of the general population, which negatively impact their self-confidence and quality of life. Despite patients pursuing invasive surgery, it is unknown whether jaw surgery is palliative for articulation errors. We are using ultrasound, audio and video imaging to explore the mechanism of articulation errors among patients with DFD. Furthermore, our lab is conducting a longitudinal study of DFD patients to determine if jaw surgery improves speech distortions, in collaboration with oral surgeons, linguistics and speech pathology.

-An additional focus of our lab has been studying use of Animal Assisted Therapy for management of anxiety and pain in dentistry. Dental anxiety effects 21-50% of patients and is associated with poor long-term oral health outcomes and need for urgent care due to dental avoidance. Non-pharmacological behavior interventions like dog therapy holds promise for reducing pain and anxiety perception for patients, and therefore improving dental experiences and promoting improved health outcomes. The lab is conducting a randomized controlled trial to evaluate best practices for canine therapy in pediatric dentistry, in collaboration with pediatric dentists, a psychology professor whose expertise is anxiety, and the UNC Biobehavioral Lab.

-As part of the COVID-19 research response, we are studying FDA-approved antiseptic mouth rinses for their ability to limit salivary viral infectivity to reduce risk of SARS-CoV-2 transmission. If an oral rinse is found to be efficacious at inactivating the SARS-CoV-2 virus, it could be a valuable preventative measure in settings where masks are removed, such as dental care, social settings, eating out, or work presentations. This study is conducted in collaboration with leading virologists and infectious disease experts at UNC.

Baldwin, Katie
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cell Biology, Developmental Biology, Molecular Biology, Neurobiology

Building a functioning brain requires an elaborate network of interactions between neurons and glia. We use mouse genetics, primary cell culture, quantitative proteomics, molecular biology, and super resolution microscopy to study glial cells during brain development. We are particularly interested in how astrocytes acquire their complex morphology and communicate with neighboring astrocytes, neurons, and oligodendrocytes. Furthermore, we are investigating how glial dysfunction drives the pathogenesis of brain disorders such as autism, schizophrenia, and leukodystrophy.

Morris, John
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Cancer Biology, Developmental Biology, Genetics, Genomics, Metabolism

The Morris lab leverages flexible mouse models of hard to treat cancers of the pancreas and liver to identify how cancer drivers perturb evolutionarily selected developmental programs and how such programs may be re-normalized. We focus on (1) the relationship between tumor suppressor pathways and the epigenetic determinants of cell plasticity, (2) evolutionary routes unleashed by specific tumor suppressor loss, and (3) how diversification at both the epigenetic and genomic level contribute to cancer development and therapeutic response.

Shpargel, Karl
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Developmental Biology, Genetics, Genomics, Organismal Biology

Our laboratory studies the coordination of histone-modifying enzymes in regulating chromatin structure, enhancer activation, and transcription. We utilize mouse genetics and cell culture model systems to study the mechanisms of enhancer activation in neural crest cell epigenetics, craniofacial development, and altered enhancer regulation in cancer. This is accomplished through a variety of techniques including mouse mutagenesis, fluorescent reporters to isolate primary cells of interest, low cell number genomics, and proteomic approaches.

Gladden, Andrew
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Developmental Biology, Genetics, Translational Medicine

The Gladden lab studies how cell adhesion and cell polarity are intertwined in normal tissue development and how these pathways are altered in diseases such as cancer. We use a combination of 3D cell culture, mouse models and protein biochemistry to study how cell polarity and adhesion regulate tissue organization. Our work focuses on the interplay between cell adhesion and cell polarity proteins at the adherens junction and how these proteins regulate tissue organization. We concentrate on the development of the endometrium epithelium in the female reproductive tract and the cell biology of endometrial cancer.

Parnell, Scott E.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Genetics, Neurobiology

Our research focuses on the genetic and cellular mechanisms that underlie how prenatal exposure to alcohol and other drugs, such as cannabinoids, disrupt normal brain development. We use a wide variety of molecular and cell biology tools including RNA-seq (whole transcriptomic profiling), mouse transgenics, and confocal imaging to understand how drugs alter cell signaling pathways and transcriptional regulation in development. Our work also studies key regulatory pathways, such as Sonic hedgehog (Shh) and other primary cilia-mediated signals, during normal and aberrant embryonic development.

Gordon, Kacy

EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Evolutionary Biology, Genetics

The Gordon lab is brand new to UNC, and studies stem cell and stem cell niche biology in the model organism C. elegans. The germ line stem cells make the gametes, which make the next generation of worms. These cells are therefore at the nexus of development, genetics, and evolution. We will be getting started with projects pertaining to evolutionary comparative gene expression in the stem cells and stem cell niche and niche development. The techniques we use include molecular biology, CRISPR/Cas9-mediated genome editing, worm genetics, and microscopy.