Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Bloom, Kerry
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Biophysics, Cell Biology, Genetics, Molecular Biology

Our objective is to understand the dynamic and structural properties of chromosomes during mitosis. We use live cell imaging techniques to address how kinetochores are assembled, capture microtubules and promote faithful segregation of chromosomes.

Bergmeier, Wolfgang
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Cell Biology & Physiology

RESEARCH INTEREST
Biochemistry, Cardiovascular Biology, Cell Biology, Cell Signaling, Translational Medicine

Our research focuses on the adhesion mechanisms of platelets and neutrophils to sites of vascular injury/ activation. For successful adhesion, both cell types rely on activation-dependent receptors (integrins) expressed on the cell surface. We are particularly interested in the role of calcium (Ca2+) as a signaling molecule that regulates the inside-out activation of integrin receptors. Our studies combine molecular and biochemical approaches with microfluidics and state-of-the-art in vivo imaging (intravital microscopy) techniques.

Bear, James E.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Pharmacology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Cell Signaling, Molecular Biology, Systems Biology

Our lab uses a combination of genetics, high-resolution cellular and animal imaging, animal tumor models and microfluidic approaches to study the problems of cell motility and cytoskeletal organization. We are particularly interested in 1) How cells sense cues in their environment and respond with directed migration, 2) How the actin cytoskeleton is organized at the leading edge of migrating cells and 3) How these processes contribute to tumor metastasis.

Bautch, Victoria
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Cardiovascular Biology, Cell Biology, Developmental Biology, Genetics

Blood vessel formation in cancer and development; use mouse culture (stem cell derived vessels) and in vivo models (embryos and tumors); genetic, cell and molecular biological tools; how do vessels assemble and pattern?, dynamic image analysis.

Bahnson, Edward Moreira
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pathobiology & Translational Science, Pharmacology

RESEARCH INTEREST
Cardiovascular Biology, Cell Biology, Drug Delivery, Nanomedicine, Translational Medicine

We are interested in studying diabetic vasculopathies. Patients with type 2 diabetes mellitus or metabolic syndrome have aggressive forms of vascular disease, possessing a greater likelihood of end-organ ischemia, as well as increased morbidity and mortality following vascular interventions. Our long term research aims to change the way we treat arterial disease in diabetes by:

  • Understanding why arterial disease is more aggressive in diabetic patients, with a focus in redox signaling in the vasculature.
  • Developing targeted systems using nanotechnology to locally deliver therapeutics to the diseased arteries.
Anton, Eva
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Cell Biology, Developmental Biology, Genetics, Molecular Biology, Neurobiology

Laminar organization of neurons in cerebral cortex is critical for normal brain function. Two distinct cellular events guarantee the emergence of laminar organization– coordinated sequence of neuronal migration, and generation of radial glial cells that supports neurogenesis and neuronal migration. Our goal is to understand the cellular and molecular mechanisms underlying neuronal migration and layer formation in the mammalian cerebral cortex. Towards this goal, we are studying the following three related questions: 1. What are the signals that regulate the establishment, development and differentiation of radial glial cells, a key substrate for neuronal migration and a source of new neurons in cerebral cortex?2. What are the signals for neuronal migration that determine how neurons reach their appropriate positions in the developing cerebral cortex?3. What are the specific cell-cell adhesion related mechanisms that determine how neurons migrate and coalesce into distinct layers in the developing cerebral cortex?

Cohen, Sarah
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cell Biology, Microscopy, Neurobiology

Lipids are crucial molecules for life. They play important roles in building membranes, storing energy, and cell signaling. We are interested in how lipids move around both within cells and between cells, for example from astrocytes to neurons. The lab uses cutting-edge microscopy techniques including live-cell imaging, superresolution microscopy, and multispectral imaging. We use these approaches to understand how defects in lipid trafficking contribute to metabolic and neurodegenerative diseases.

Homeister, Jonathon W.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Cell Biology, Immunology, Pathology, Physiology

Our research focuses on understanding the molecular and cellular mechanisms of leukocyte (white blood cell) trafficking and homing in vascular inflammation and immune responses. We are interested in the glycobiology of the Selectin leukocyte adhesion molecules and their ligands, and understanding the roles for these glycoproteins in the pathogenesis of inflammatory/immune cardiovascular diseases such as atherosclerosis and vasculitis. We are also interested in the mechanisms whereby the selectins and their ligands link the inflammatory response and coagulation cascade and thereby modulate thrombosis and hemostasis.

Jones, Alan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Pharmacology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Cell Biology, Cell Signaling, Genetics, Pharmacology

The Jones lab is interested in heterotrimeric G protein-coupled signaling and uses genetic model systems to dissect signaling networks.  The G-protein complex serves as the nexus between cell surface receptors and various downstream enzymes that ultimately alter cell behavior. Metazoans have a hopelessly complex repertoire of G-protein complexes and cell surface receptors so we turned to the reference plant, Arabidopsis thaliana, and the yeast, Saccharomyces cerevisiae, as our models because these two organisms have only two potential G protein complexes and few cell surface receptors.  Their simplicity and the ability to genetically manipulate genes in these organisms make them powerful tools.  We use a variety of cell biology approaches, sophisticated imaging techniques, 3-D protein structure analyses, forward and reverse genetic approaches, and biochemistries.

Kesimer, Mehmet
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Biochemistry, Cell Biology, Molecular Biology, Pathology, Translational Medicine

One of the main focuses of my work is the characterization of the large mucin gene products (Mr 2-3 million) and the complexes they make (Mr 10-100 million) essential for the formation of the mucus gels vital for epithelial protection and function. My current work is focused around the human lung, where there are many hypersecretory human diseases, including asthma, cystic fibrosis, and chronic bronchitis, in which these glycoconjugates are centrally implicated. Basic understanding of the qualitative and quantitative changes of mucin macromolecules in lung health and diseases is our main task.