Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Kratochvil, Huong
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Chemistry

RESEARCH INTEREST
Biophysics, Chemical Biology, Structural Biology

We take inspiration from Nature to build new proteins that guide our understanding of how natural proteins function: we can distill complex natural proteins into simple model proteins where we have exact control over the physicochemical properties of the entire system. Our group combines protein design strategies with biochemistry, biophysics, and structural biology to 1) test mechanistic hypotheses of membrane protein structure and function, and 2) define novel protein-protein interactions in immunology for engineering protein-based therapeutics.

Nazockdast, Ehssan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Applied Physical Sciences

RESEARCH INTEREST
Biomaterials, Biophysics, Cell Biology, Computational Biology

We are interested in the physics of soft and squishy materials, especially the organization and mechanics of living cellular materials. We use theory and simulation in close collaboration with experiments to understand the complex structural and mechanical behavior of these systems. These questions and our approach to them are interdisciplinary and intersect several traditional fields, including cell biology, biophysics, fluid dynamics and applied mathematics.

Freeman, Ronit
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Applied Physical Sciences, Biomedical Engineering, Chemistry

RESEARCH INTEREST
Biomaterials, Biophysics, Cancer Biology, Cell Biology, Cell Signaling, Drug Delivery, Drug Discovery, Nanomedicine, Translational Medicine

My lab focuses on developing bioinspired molecular constructs and material platforms that can mimic proteins and be programmed to respond to stimuli resulting from biomolecular recognition. Major efforts are directed to design peptide- and nucleic acid-based scaffolds or injectable nanostructures to create artificial extracellular matrices that can directly signal cells.

Superfine, Richard
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Applied Physical Sciences, Biomedical Engineering

RESEARCH INTEREST
Biomaterials, Biophysics, Cell Biology, Computational Biology, Systems Biology

Superfine’s group studies stimulus-responsive active and living materials from the scale of individual molecules to physiological tissues, including DNA, cells and microfluidic-based tissue models. We develop new techniques using advanced optical, scanning probe, and magnetic force microscopy. We pursue diverse physiological phenomena from cancer to immunology to mucus clearance in the lung. Our work includes developing systems that mimic biology, most recently in the form of engineered cilia arrays that mimic lung tissue while providing unique solutions in biomedical devices.

Bai, Wubin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biomedical Engineering

RESEARCH INTEREST
Biomaterials, Biophysics, Drug Delivery

Our research focuses on both fundamental and applied study of soft materials and nanomaterials, develop fabrication approaches to enable hybrid integration of multi-materials towards high-performance electronic and photonic systems, innovate new technology that can intelligently immerse electronics and photonics into biological systems, and create new tools and devices to address unmet clinical needs and improve human healthcare. Our lab fosters a collaborative environment that converges expertise/interests from various backgrounds including materials science and engineering, electrical engineering, physics, chemical engineering, mechanical engineering, and biomedical engineering. We provide hands-on learning, enjoy making practical tools, and aspire to transform scientific advancements into societal solutions.

Berlow, Rebecca
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Molecular Medicine, Structural Biology

Our lab is interested in the molecular mechanisms of adaptive stress responses. These responses to environmental or metabolic stress are essential for survival but frequently dysregulated in disease. We use an integrated approach combining biophysical, structural, and biochemical methods to investigate the roles of intrinsically disordered proteins and dynamic enzymes that orchestrate these critical stress responses, with the ultimate goal of developing new approaches for modulating the functions of dynamic molecules.

Brunk, Elizabeth
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Chemistry, Pharmacology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Cancer Biology, Computational Biology, Genomics, Pharmacology, Structural Biology, Systems Biology, Translational Medicine

A growing body of work in the biomedical sciences generates and analyzes omics data; our lab’s work contributes to these efforts by focusing on the integration of different omics data types to bring mechanistic insights to the multi-scale nature of cellular processes. The focus of our research is on developing systems genomics approaches to study the impact of genomic variation on genome function. We have used this focus to study genetic and molecular variation in both natural and engineered cellular systems and approach these topics through the lens of computational biology, machine learning and advanced omics data integration. More specifically, we create methods to reveal functional relationships across genomics, transcriptomics, ribosome profiling, proteomics, structural genomics, metabolomics and phenotype variability data. Our integrative omics methods improve understanding of how cells achieve regulation at multiple scales of complexity and link to genetic and molecular variants that influence these processes. Ultimately, the goal of our research is advancing the analysis of high-throughput omics technologies to empower patient care and clinical trial selections. To this end, we are developing integrative methods to improve mutation panels by selecting more informative genetic and molecular biomarkers that match disease relevance.

Lu, Zhiyue
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Chemistry

RESEARCH INTEREST
Biomaterials, Biophysics, Cell Signaling, Computational Biology, Drug Delivery, Systems Biology

Button, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Biochemistry, Biomaterials, Biophysics, Cell Biology, Cell Signaling, Drug Delivery, Drug Discovery, Nanomedicine, Pathology, Physiology, Systems Biology, Translational Medicine

The Button lab in the Department of Biochemistry and Biophysics is part of the Marsico Lung Institute. Our lab is actively involved in projects that are designed to define the pathogenesis of muco-obstructive pulmonary disorders and to identify therapies that could be used to improve the quality of life in persons afflicted by these diseases. In particular, our research works to understand the biochemical and biophysical properties of mucin biopolymers, which give airway mucus its characteristic gel-like properties, and how they are altered in diseases such as Asthma, COPD, and cystic fibrosis.

Baker, Rick
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Molecular Biology, Structural Biology

Our lab is interested in the mechanisms of membrane trafficking in eukaryotic cells. Using a combination of biochemistry, in vitro reconstitution, and structural biology, we seek to understand how protein complexes assemble to bend and perturb membranes during vesicle budding (endocytosis) and vesicle fusion (exocytosis). Our group also specializes in cryo-electron microscopy (cryo-EM) and we use semi-native substrates (nanodiscs, liposomes) to visualize complexes engaged with the membrane.