Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Moody, Cary
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Oral & Craniofacial Biomedicine

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Immunology, Microbiology, Molecular Biology, Pathogenesis & Infection, Virology

Our lab focuses on the life cycle of cancer-associated human papillomaviruses (HPV); small DNA viruses that exhibit a strict tropism for the epithelium. Several studies in our lab focus on the interface of HPV with cellular DNA damage response (DDR) pathways and how HPV manipulates DNA repair pathways to facilitate viral replication. We are also interested in understanding how the viral life cycle is epigenetically regulated by the DDR as well as by other chromatin modifiers. Additionally, we are investigating how HPV regulates the innate immune response throughout the viral life cycle.

Moorman, Nat
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Molecular Biology, Virology

How does a virus gain control over the host cell? My laboratory is interested in answering this question at the molecular level. By combining molecular biology and virology with new technologies (e.g. mass spectrometry, next generation sequencing), we investigate the mechanisms utilized by viruses to hijack infected cells. By understanding the specific function(s) of viral proteins during infection, we identify strategies used by viruses for deregulation of host cell processes. We use this information to characterize novel features of cell signaling pathways during infection, and to identify potential targets for anti-viral therapeutics.

Nicholas, Robert A.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Neuroscience, Pharmacology

RESEARCH INTEREST
Bacteriology, Biochemistry, Molecular Biology, Neurobiology, Pharmacology

My laboratory has two main interests: 1) Regulation of P2Y receptor signaling and trafficking in epithelial cells and platelets. Our laboratory investigates the cellular and molecular mechanisms by which P2Y receptors are differentially targeted to distinct membrane surfaces of polarized epithelial cells and the regulation of P2Y receptor signaling during ADP-promoted platelet aggregation. 2) Antibiotic resistance mechanisms. We investigate the mechanisms of antibiotic resistance in the pathogenic bacterium, Neisseria gonorrhoeae. Our laboratory investigates how acquisition of mutant alleles of existing genes confers resistance to penicillin and cephalosporins. We also study the biosynthesis of the gonococcal Type IV pilus and its contribution to antibiotic resistance.

Peden, David B.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Toxicology

RESEARCH INTEREST
Toxicology

Translational and clinical research in environmental lung disease.

Pickles, Raymond J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Physiology, Virology

My laboratory, located in the Cystic Fibrosis/Pulmonary Research and Treatment Center in the Thurston-Bowles building at UNC, is interested in how respiratory viruses infect the airway epithelium of the conducting airways of the human lung.

Redinbo, Matt
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Chemistry, Microbiology & Immunology, Oral & Craniofacial Biomedicine, Pathobiology & Translational Science, Pharmaceutical Sciences, Pharmacology

RESEARCH INTEREST
Bacteriology, Biochemistry, Bioinformatics, Biophysics, Cancer Biology, Chemical Biology, Computational Biology, Drug Delivery, Drug Discovery, Metabolism, Microbiology, Molecular Biology, Molecular Medicine, Pharmacology, Plant Biology, Structural Biology, Systems Biology, Toxicology

We are interested in unraveling the molecular basis for human disease and discover new treatments focused on human and microbial targets. Our work extends from atomic-level studies using structural biology, through chemical biology efforts to identify new drugs, and into cellular, animal and clinical investigations. While we are currently focused on the gut microbiome, past work has examined how drugs are detected and degraded in humans, proteins designed to protect soldiers from chemical weapons, how antibiotic resistance spreads, and novel approaches to treat bacterial infections. The Redinbo Laboratory actively works to increase equity and inclusion in our lab, in science, and in the world. Our lab is centered around collaboration, open communication, and trust. We welcome and support anyone regardless of race, disability, gender identification, sexual orientation, age, financial background, or religion. We aim to: 1) Provide an inclusive, equitable, and encouraging work environment 2) Actively broaden representation in STEM to correct historical opportunity imbalances 3) Respect and support each individual’s needs, decisions, and career goals 4) Celebrate our differences and use them to discover new ways of thinking and to better our science and our community

Sartor, R. Balfour
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Genetics, Immunology, Pathogenesis & Infection, Pathology

Our long term goals are to better define mechanisms of chronic intestinal inflammation and to identify areas for therapeutic intervention. Research in our laboratories is in the following four general areas: 1) Induction and perpetuation of chronic intestinal and extraintestinal inflammation by resident intestinal bacteria and their cell wall polymers, 2) Mechanisms of genetically determined host susceptibility to bacterial product,. 3) Regulation of immunosuppressive molecules in intestinal epithelial cells and 4) Performing clinical trials of novel therapeutic agents in inflammatory bowel disease patients.

Serody, Jonathan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Immunology, Pathology, Physiology

The Serody laboratory focuses on tumor and transplant immunology studies using both animal models and translational work with clinical samples. We have performed pioneering work in both of these areas. Our laboratory was the first to describe a role for migratory proteins in the biology of acute GVHD. We were the first group to use eGFP transgenic mice generated in part by our group to track the migration of donor cells after transplant. This work showed a critical role for lymphoid tissue in the activation of donor T cells. Most recently we have been the first group to demonstrate the absence of ILC2 cells in the GI tract after all types of transplant and we have generated novel studies into the ILC2 niche in the bone marrow. For our tumor work we were one of the first groups to use genomic evaluations of the tumor microenvironment to characterize the immune response in cancer models. We were the first group to demonstrate how to enhance checkpoint inhibitor therapy in triple negative breast cancer models and have been one of the leading groups in performing genomic evaluations using TCGA data. Finally, we are one of the leading groups in the world characterizing the role of B cells in the anti-tumor immune response.

Swanstrom, Ronald
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Evolutionary Biology, Genetics, Molecular Biology, Pathogenesis & Infection, Virology

First, we study the complex HIV-1 population that exists within a person.  We use this complexity to ask questions about viral evolution, transmission, compartmentalization, and pathogenesis.  Second, we are exploring the impact of drug resistance on viral fitness and identifying new drug targets in the viral protein processing pathway.  Third, we participate in a collaborative effort to develop an HIV-1 vaccine.  Fourth, we are using mutagenesis to determine the role of RNA secondary structure in viral replication.

Tamayo, Rita
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Biochemistry, Cell Signaling, Molecular Biology, Pathogenesis & Infection

Our lab studies the mechanisms facultative pathogens use to adapt to disparate and changing extracellular conditions. Our primary interest is in the ability of Vibrio cholerae, the causative agent of cholera, to persist in its native aquatic environment and also flourish in the host intestinal tract. We are addressing key questions about the role of cyclic diguanylate, a signaling molecule unique to and ubiquitous in bacteria, in the physiological adaptations of V. cholerae as it transits from the aquatic environment into a host. In addition, we are identifying and characterizing factors produced by V. cholerae during growth in a biofilm, a determinant of survival in aquatic environments, that contribute to virulence.  I will be accepting rotation students beginning in the winter of 2009.