Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Brenman, Jay
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Cell Biology, Developmental Biology, Genetics, Molecular Biology, Neurobiology

The Brenman lab studies how a universal energy and stress sensor, AMP-activated protein kinase (AMPK) regulates cellular function and signaling. AMPK is proposed to be a therapeutic target for Type 2 diabetes and Metabolic syndrome (obesity, insulin resistance, cardiovascular disease). In addition, AMPK can be activated by LKB1, a known human tumor suppressor. Thus AMPK signaling is not only relevant to diabetes but also cancer. We are interested in molecular genetic and biochemical approaches to understand how AMPK contributes to neurodegeneration, metabolism/cardiac disease and cancer.

Boettiger, Charlotte
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Pharmacology, Physiology, Systems Biology

My lab uses a cognitive neuroscience approach to understand the neurobiology of drug addiction in humans. The tools we use include fMRI, cognitive testing, physiological monitoring, pharmacology, and genetic testing. We specifically seek to determine 1) how the brain learns new stimulus-response associations and replaces learned associations, 2) the neurobiological mechanisms underlying the tendency to select immediate over delayed rewards, and 3) the neural bases of addiction-related attentional bias.

Besheer, Joyce
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Pharmacology

Research in my lab examines the neurobiological mechanisms underlying alcoholism and addiction. At present studies are focused on the interaction between stress-related systems and sensitivity to alcohol, in order to better understand the mechanisms that underlie increased alcohol drinking during stressful episodes. We use an array of behavioral (e.g., operant self-administration, drug discrimination) and behavioral pharmacology techniques, including targeted brain regional drug injections, to functionally evaluate the role of specific molecular targets. In parallel to the behavioral studies, we use immunohistochemistry and Western blot techniques to examine alterations in the expression of various molecular targets following stress exposure. We are also applying these techniques to examine and integrate the study of depression that emerges following stress hormone exposure.

Belger, Aysenil
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Bioinformatics, Developmental Biology, Neurobiology

My Lab focuses on studies of neural circuits underlying attention, executive function and stress response in the human brain, as well as the breakdown in these functions in neuropsychiatric and neurodevelopment disorders such as schizophrenia, substance abuse, depression and autism. We are particular interested in identifying neural precursors and predictors of illness in high-risk adolescents, including risk for psychosis, mood disorders and substance abuse. Our research uses multimodal imaging integrating functional magnetic resonance imaging, electrophysiological scalp recording, experimental psychology and neuropsychological assessment techniques to explore the behavioral and neurophysiological dimensions of information processing. Much of the current work focuses on mapping the role of stress neurobiology in predicting severity of anxiety and anhedonia in adolescents and procuring risk for severe psychiatric developmental disorders.

Batrakova, Elena
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Drug Delivery, Nanomedicine, Neurobiology

What if you can target and deliver a drug directly to the side of disease in the body? It is possible, when you use smart living creatures pro-inflammatory response cells, such as monocytes, T-lymphocytes or dendritic cells. You can load these cells with the drug and inject these carriers into the blood stream. They will migrate to the inflammation site (for example, across the blood brain barrier) and release the drug. Thus, you can reduce the inflammation and protect the cells (for example, neurons) in patients with Parkinson’s and Alzheimer diseases.

Anton, Eva
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Cell Biology, Developmental Biology, Genetics, Molecular Biology, Neurobiology

Laminar organization of neurons in cerebral cortex is critical for normal brain function. Two distinct cellular events guarantee the emergence of laminar organization– coordinated sequence of neuronal migration, and generation of radial glial cells that supports neurogenesis and neuronal migration. Our goal is to understand the cellular and molecular mechanisms underlying neuronal migration and layer formation in the mammalian cerebral cortex. Towards this goal, we are studying the following three related questions: 1. What are the signals that regulate the establishment, development and differentiation of radial glial cells, a key substrate for neuronal migration and a source of new neurons in cerebral cortex?2. What are the signals for neuronal migration that determine how neurons reach their appropriate positions in the developing cerebral cortex?3. What are the specific cell-cell adhesion related mechanisms that determine how neurons migrate and coalesce into distinct layers in the developing cerebral cortex?

Diering, Graham
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biochemistry, Genetics, Neurobiology, Pharmacology

Sleep is an essential and evolutionarily conserved process that modifies synapses in the brain to support cognitive functions such as learning and memory. We are interested in understanding the molecular mechanisms of synaptic plasticity with a particular interest in sleep. Using mouse models of human disease as well as primary cultured neurons, we are applying this work to understanding and treating neurodevelopmental disorders including autism and intellectual disability. The lab focuses on biochemistry, pharmacology, animal behavior and genetics.

Cohen, Sarah
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cell Biology, Microscopy, Neurobiology

Lipids are crucial molecules for life. They play important roles in building membranes, storing energy, and cell signaling. We are interested in how lipids move around both within cells and between cells, for example from astrocytes to neurons. The lab uses cutting-edge microscopy techniques including live-cell imaging, superresolution microscopy, and multispectral imaging. We use these approaches to understand how defects in lipid trafficking contribute to metabolic and neurodegenerative diseases.

Harry, G. Jean
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Developmental Biology, Neurobiology, Pharmacology, Toxicology

The Neurotoxicology Group examines the role of microglia interactions with neurons and the associated immune-mediated responses in brain development and aging as they relate to the initiation of brain damage, the progression of cell death, and subsequent repair/regenerative capabilities.  We have an interest in the neuroimmune response with regards to neurodegenerative diseases such as, Alzheimer’s disease.

Hazari, Mehdi S
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cardiovascular Biology, Neurobiology, Physiology, Toxicology

Research in my laboratory focuses on the effects of air pollution and other environmental pollutants on the cardiovascular and respiratory systems. We use both traditional as well as novel physiological approaches (radiotelemetry, HF echocardiography, physiological challenge testing) to determine not only the short-term effects of exposure, but also the long-term consequences on health, particularly in the development of chronic diseases (e.g. heart disease). Rodent models are used to study the effects of real-world air pollution concentrations on the central and local neural controls of the cardiovascular and respiratory systems that render a host susceptible to adverse health events. Newer exciting research is focused on public health aspects such as nutrition (e.g. vitamin deficiencies) and non-environmental stressors (e.g. noise, climate change, social disruption) as modifiers of air pollution health effects. These studies examine the epigenetic changes that occur in early life or during development that result in physiological effects and future susceptibility.