Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Hige, Toshi
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Behavior, Genetics, Neurobiology, Physiology

Flexibility of the brain allows the same sensory cue to have very different meaning to the animal depending on past experience (i.e. learning and memory) or current context. Our goal is to understand this process at the levels of synaptic plasticity, neural circuit and behavior. Our model system is a simple brain of the fruit fly, Drosophila. We employ in vivo electrophysiology and two-photon calcium imaging together with genetic circuit manipulation. Taking advantage of this unique combination, we aim to find important circuit principles that are shared with vertebrate systems.

 

Kato, Hiroyuki
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Physiology

Our primary goal is to identify how our brain processes sound inputs to detect complex patterns, such as our language. Using mouse auditory cortex as a model system, we combine multiple cutting-edge techniques (e.g. in vivo whole-cell recording, two-photon calcium imaging, and optogenetics) in behaving animals to dissect the circuits that connect vocal inputs to behavioral outputs. Findings in the simple mouse cortex should provide a first step towards the ultimate understanding of the complex human brain circuits that enable verbal communication, and how they fail in psychiatric disorders.

Herman, Melissa
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Neurobiology, Pharmacology, Physiology, Systems Biology

My research interests involve the structure of inhibitory neuronal networks and how these networks change to produce adverse behavioral outcomes. My main interest is how the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) regulates neuronal networks via both synaptic and extrasynaptic forms of inhibition and how alterations in inhibitory networks contribute to clinical conditions such as alcohol use disorder, nicotine, addiction, or stress. My work has focused primarily on three brain regions: the nucleus tractus solitaries (NTS), central and basolateral amygdala, and ventral tegmental area. In each of these areas I have identified local inhibitory networks that control overall excitability and that are dysregulated by exposure to acute and or chronic exposure to alcohol or nicotine.

Gupton, Stephanie
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Cell Signaling, Genetics, Neurobiology, Stem Cells

During cell shape change and motility, a dynamic cytoskeleton produces the force to initiate plasma membrane protrusion, while vesicle trafficking supplies phospholipids and membrane proteins to the expanding plasma membrane. Extracellular cues activate intracellular signaling pathways to elicit specific cell shape changes and motility responses through coordinated cytoskeletal dynamics and vesicle trafficking. In my lab we are investigating the role of two ubiquitin ligases, TRIM9 and TRIM67, in the cell shape changes that occur during neuronal development. We utilize a variety techniques including high resolution live cell microscopy, gene disruption, mouse models, and biochemistry to understand the complex coordination of cytoskeletal dynamics and membrane trafficking driving neuronal shape change and growth cone motility in primary neurons.

Giovanello, Kelly S.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Neurobiology, Translational Medicine

My research combines behavioral, patient-based, and functional neuroimaging approaches to investigate the cognitive neuroscience of human learning and memory. My primary research focus is in elucidating the cognitive processes and neural mechanisms mediating relational memory – the form of memory which represents relationships among items or informational elements. In everyday life, relational memory processes play a critical role in linking or binding together the various cognitive, affective, and contextual components of a learning event into an integrated memory trace. I am interested in exploring the cognitive and neural processes mediating relational memory in young adults and examining how these processes change with healthy aging and neurodegenerative disease (particularly Alzheimer’s disease).

Gilmore, John
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Developmental Biology, Genetics, Neurobiology, Translational Medicine

Dr. Gilmore’s research group is applying state-of–the-art magnetic resonance imaging and image analysis techniques to study human brain development in 0-6 year olds.  Approaches include structural, diffusion tensor, and resting state functional imaging, with a focus on cortical gray and white matter development and its relationship to cognitive development.  Studies include normally developing children, twins, and children at high risk for schizophrenia and bipolar illness.  We also study the contributions of genetic and environmental risk factors to early brain development in humans.  A developing collaborative project with Flavio Frohlich, PhD will use imaging to study white and gray matter development in ferrets and its relationship with cortical oscillatory network development.

Frohlich, Flavio
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Computational Biology, Neurobiology, Physiology, Systems Biology, Translational Medicine

Our goal is to revolutionize the treatment of psychiatric and neurological illness by developing novel brain stimulation paradigms. We identify and target network dynamics of physiological and pathological brain function. We combine computational modeling, optogenetics, in vitro and in vivo electrophysiology in animal models and humans, control engineering, and clinical trials. We strive to make our laboratory a productive, collaborative, and happy workplace.

Dudek, Serena M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Neurobiology

Humans have a remarkable ability to learn from their environment after birth, but this plasticity also makes them susceptible to environmental insults.  At the cellular level, learning is accomplished by changing the strength of the synaptic connections between neurons.  Therefore, the Dudek lab is working to identify the underlying processes of synaptic plasticity.  Using molecular techniques, patch clamp recordings and confocal microscopic imaging from neurons in brain slices and culture, we ask how neuronal activity controls gene transcription and brain circuitry and what determines why some brain regions are more plastic than others.  These studies are likely to shed light on environmental causes of psychiatric diseases such as schizophrenia and autism.

Deshmukh, Mohanish
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Neurobiology, Translational Medicine

We study how mammalian cells regulate their survival and death (apoptosis). We have focused our work on identifying unique mechanisms by which these pathways are regulated in neurons, stem cells, and cancer cells. We utilize various techniques to examine this in primary cells as well as in transgenic and knock out mouse models in vivo. Our ultimate goal is to discover novel cell survival and death mediators that can be targeted for therapy in neurodegeneration and cancer.

Dayan, Eran
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Bioinformatics, Neurobiology, Systems Biology, Translational Medicine

Our lab studies brain network connectivity in the healthy brain and in neurological and neuropsychiatric patient populations. We focus on the organizational, dynamical, and computational properties of large-scale brain networks and determine how these properties contribute to human behavior in health and disease. We strive to advance the basic understanding of brain structure and function, while making discoveries that can be translated to clinical practice.