Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Nicholas, Robert A.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Neuroscience, Pharmacology

RESEARCH INTEREST
Bacteriology, Biochemistry, Molecular Biology, Neurobiology, Pharmacology

My laboratory has two main interests: 1) Regulation of P2Y receptor signaling and trafficking in epithelial cells and platelets. Our laboratory investigates the cellular and molecular mechanisms by which P2Y receptors are differentially targeted to distinct membrane surfaces of polarized epithelial cells and the regulation of P2Y receptor signaling during ADP-promoted platelet aggregation. 2) Antibiotic resistance mechanisms. We investigate the mechanisms of antibiotic resistance in the pathogenic bacterium, Neisseria gonorrhoeae. Our laboratory investigates how acquisition of mutant alleles of existing genes confers resistance to penicillin and cephalosporins. We also study the biosynthesis of the gonococcal Type IV pilus and its contribution to antibiotic resistance.

Philpot, Ben
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Behavior, Molecular Biology, Neurobiology, Physiology

My lab is driven to understand the neuronal pathologies underlying neurodevelopmental disorders, and to use this information to identify novel therapeutics.  We focus our research on monogenic autism spectrum disorders, including Angelman, Rett, and Pitt-Hopkins syndromes.  We employ a diverse number of techniques including: electrophysiology, molecular biology, biochemistry, mouse engineering, and in vivo imaging.

Robinson, Donita
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Pharmacology, Physiology, Systems Biology

The Robinson lab currently explores the neurodynamics of reinforcement pathways in the brain by using state-of-the-art, in vivo recording techniques in freely moving rats. Our goal is to understand the interplay of mesostriatal, mesocortical and corticostriatal circuits that underlie action selection, both in the context of normal development and function, and in the context of psychiatric disorders that involve maladaptive behavior, such as alcohol use disorder, adolescent vulnerability to drug use and addiction, cocaine-induced maternal neglect and binge-eating disorders.

Roth, Bryan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Chemical Biology, Neurobiology, Pharmacology

The ultimate goal of our studies is to discover novel ways to treat human disease using G-protein coupled receptors.

Shih, Yen-Yu Ian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Neurobiology, Physiology, Structural Biology, Systems Biology, Translational Medicine

Dr. Shih is the Director of Small Animal Magnetic Resonance Imaging (MRI) at the Biomedical Research Imaging Center. His lab has implemented multi-model MRI techniques at high magnetic field to measure cerebral blood oxygenation, blood flow, blood volume, and oxygen metabolism changes in preclinical animal models. Dr. Shih’s lab is also developing simultaneous functional MRI (fMRI) and electrophysiology recording techniques at high spatial resolution to elucidate the pathophysiological mechanisms of neurovascular diseases. They will apply these techniques to (i) explore/validate functional connectivity network and neurovascular coupling in the rodent brain, (ii) study tissue characteristics after stroke, and (iii) investigate deep brain electrical stimulation, optogenetic stimulation, and pharmacogenetic stimulation in normal and Parkinsonian animal models.

Slep, Kevin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Cell Biology, Molecular Biology, Neurobiology, Structural Biology

Our lab examines cytoskeletal dynamics, the molecules that regulate it and the biological processes it is involved in using live cell imaging, in vitro reconstitution and x-ray crystallography.  Of particular interest are the microtubule +TIP proteins that dynamically localize to microtubule plus ends, communicate with the actin network, regulate microtubule dynamics, capture kinetochores and engage the cell cortex under polarity-based cues.

Taylor, Anne Marion
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Cell Biology, Drug Discovery, Neurobiology

Local mRNA translation is critical for axon regeneration, synapse formation, and synaptic plasticity. While much of research has focused on local translation in dendrites and in peripheral axons, less is known about local translation in smaller diameter central axons due to the technical difficulty of accessing them. We developed microfluidic technology to allow access to axons, as well as nascent boutons and fully functional boutons. We identified multiple transcripts that are targeted to cortical and hippocampal axons in rat (Taylor et al. J Neurosci 2009). Importantly, this work countered the prevailing view that local mRNA translation does not occur in mature axons. We are actively investigating transcripts in axons that may play a role in establishing proper synaptic connections. We are also using our technology to identify transcripts targeted to axons and boutons in human neurons. These studies are a critical step towards the identification of key genes and signaling molecules during synapse development, axonal regeneration, and proper circuit function.

Thiele, Todd
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Neurobiology, Pharmacology, Physiology

My primary research interests are directed at the neurobiology of alcoholism. To study the central mechanisms involved with neurobiological responses to ethanol, I use both genetic and pharmacological manipulations. There are many factors that may cause an individual to progress from a moderate or social drinker to an alcoholic. In addition to environmental influences, there is growing evidence in both the human and animal literature that genetic factors contribute to alcohol abuse. Furthermore, the risk for developing alcoholism is likely not associated with a single gene, but rather with multiple genes that interact with environmental factors to determine susceptibility for uncontrolled drinking. Some of the questions that my laboratory is currently addressing are: 1) Does central neuropeptide Y (NPY) signaling modulate neurobiological responses to ethanol and ethanol consumption, 2) Do melanocortin peptides modulate ethanol intake? and 3) Does cAMP-dependent kinase (PKA) play a role in voluntary ethanol consumption and/or other effects produced by ethanol?

Weiss, Ellen
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cell Biology, Cell Signaling, Molecular Biology, Neurobiology

The vertebrate retina is an extension of the central nervous system that controls visual signaling and circadian rhythm.  Our laboratory is interested in how the retina adapts to changing light intensities in the natural environment.  We are presently studying the regulation of 2 G protein-coupled receptor kinases, GRK1 and GRK7, that participate in signal termination in the light-detecting cells of the retina, the rods and cones.  Signal termination helps these cells recover from light exposure and adapt to continually changing light intensities.  Recently, we determined that GRK1 and GRK7 are phosphorylated by cAMP-dependent protein kinase (PKA).  Since cAMP levels are regulated by light in the retina, phosphorylation by PKA may be important in recovery and adaptation.  Biochemical and molecular approaches are used in 2 model organisms, mouse and zebrafish, to address the role of PKA in retina function. Keywords:  cAMP, cone, G protein-coupled receptor, GPCR, GRK, kinase, neurobiology, opsin, PKA, retina, rhodopsin rod, second messenger, signal transduction, vision.

Zylka, Mark J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Cell Biology, Genetics, Genomics, Molecular Biology, Neurobiology, Physiology

Our research is focused on two general areas:  1. Autism and 2. Pain.  Our autism research is focused on topoisomerases and other transcriptional regulators that were recently linked to autism.  We use genome-wide approaches to better understand how these transcriptional regulators affect gene expression in developing and adult neurons (such as RNA-seq, ChIP-seq, Crispr/Cas9 for knocking out genes).  We also assess how synaptic function is affected, using calcium imaging and electrophysiology.   In addition, we are performing a large RNA-seq screen to identify chemicals and drugs that increase risk for autism.   /  / Our pain research is focused on lipid kinases that regulate pain signaling and sensitization.  This includes work with cultured dorsal root ganglia (DRG) neurons, molecular biology and behavioral models of chronic pain.  We also are working on drug discovery projects, with an eye towards developing new therapeutics for chronic pain.