Research Interest: Computational Biology
Name | PhD Program | Research Interest | Publications |
---|---|---|
Palmer, Adam WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Palmer lab investigates combination cancer therapy: understanding the mechanisms of successful drug combinations to inform the development of combinations with new cancer therapies. Our approach is a synthesis of experiments, analysis of clinical data, and modeling. Students can pursue projects that are experimental, computational, or a mixture of both. Our goals are to improve the design of drug combinations, the interpretation of clinical trials, and patient stratification to increase rates of response and cure through more precise use of cancer medicines in combinations. |
Raab, Jesse WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We are interested in the links between epigenetics and gene regulation. Our primary focus is on understanding how changes to the composition of chromatin remodeling complexes are regulated, how their disruption affects their function, and contributes to disease. We focus on the SWI/SNF complex, which is mutated in 20% of all human tumors. This complex contains many variable subunits that can be assembled in combination to yield thousands of biochemically distinct complexes. We use a variety of computational and wet-lab techniques in cell culture and animal models to address these questions. |
Dowen, Rob WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Appropriate allocation of cellular lipid stores is paramount to maintaining organismal energy homeostasis. Dysregulation of these pathways can manifest in human metabolic syndromes, including cardiovascular disease, obesity, diabetes, and cancer. The goal of my lab is to elucidate the molecular mechanisms that govern the storage, metabolism, and intercellular transport of lipids; as well as understand how these circuits interface with other cellular homeostatic pathways (e.g., growth and aging). We utilize C. elegans as a model system to interrogate these evolutionarily conserved pathways, combining genetic approaches (forward and reverse genetic screens, CRISPR) with genomic methodologies (ChIP-Seq, mRNA-Seq, DNA-Seq) to identify new components and mechanisms of metabolic regulation. |
Zannas, Anthony WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Psychosocial stress is abundant in modern societies and, when chronic or excessive, can have detrimental effects on our bodies. But how exactly does stress “get under the skin?” Our lab examines how stress shapes the human epigenome as age advances. Epigenetic changes are a set of chemical modifications that regulate gene transcription without altering the genetic code itself. We examine how lasting epigenetic patterns result from stressful experiences, accrue throughout life, and can in turn shape health or disease trajectories. We address these questions through a translational approach that combines large-scale analyses in human cohorts with mechanistic work in cellular models. We use both bioinformatics and wet lab tools. Our passion is to promote creative team work, offer strong mentorship, and foster scientific growth. |
Vincent, Benjamin WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Vincent laboratory focuses on immunogenomics and systems approaches to understanding tumor immunobiology, with the goal of developing clinically relevant insights and new cancer immunotherapies. Our mission is to make discoveries that help cancer patients live longer and better lives, focusing on research areas where we feel our work will lead to cures. Our core values are scientific integrity, continual growth, communication, resource stewardship, and mutual respect. |
Linnstaedt, Sarah WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Trauma and stress are common in life. While most individuals recover following trauma/stress exposure, a substantial subset will go on to develop adverse neuropsychiatric outcomes such as chronic pain, posttraumatic stress disorder (PTSD), depression, and postconcussive symptoms. Our research is focused on understanding individual vulnerability to such outcomes and to identify novel biomarkers and targets for therapeutic intervention. We use translational research approaches, including bioinformatics analysis of large prospective human cohort data, animal model research, and systems and molecular biology to better understand pathogenic mechanisms. We are particularly interested in the genetic and psychiatric/social factors influencing adverse outcome development, as well as biological sex differences that contribute to higher rates of these outcomes in women vs men. |
Dominguez, Daniel WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Dominguez lab studies how gene expression is controlled by proteins that bind RNA. RNA binding proteins control the way RNAs are transcribed, spliced, polyadenylated, exported, degraded, and translated. Areas of research include: (1) Altered RNA-protein interactions in cancer; (2) RNA binding by noncanonical domains; and (3) Cell signaling and RNA processing. |
Griffith, Boyce WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My group develops and deploys computational tools to predict physiological function and dysfunction. We are interested in a range of applications in medicine and biology, but our primary focus is the cardiovascular system. My group is actively developing fluid-structure interaction (FSI) models of the heart, arteries, and veins, and of cardiovascular medical devices, including bioprosthetic heart valves, ventricular assist devices, and inferior vena cava filters. We are also validating these models using in vitro and in vivo approaches. We also model cardiac electrophysiology and electro-mechanical coupling, with a focus on atrial fibrillation (AF), and aim to develop mechanistically detailed descriptions of thrombosis in AF. This work is carried out in collaboration with clinicians, engineers, computer and computational scientists, and mathematical scientists in academia, industry, and regulatory agencies. |
Schrider, Daniel WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Schrider Lab develops and applies computational tools to use population genetic datasets to make inferences about evolutionary history. Our research areas include but are not limited to: characterizing the effects natural selection on genetic variation within species, identifying genes responsible for recent adaptation, detecting genomic copy number variants and other weird types of mutations, and adapting machine learning tools for application to questions in population genetics and evolution. Study organisms include humans, the fruit fly Drosophila melanogaster and its relatives, and the malaria vector mosquito Anopheles gambiae. |
Hoadley, Katherine A. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research interest is in genomic characterization and integrative genomic approaches to better understand cancer. My group is part of the NCI Genome Data Analysis Center focused on RNA expression analysis. We have a number of ongoing projects including developing molecular classifications for potential clinical utility, developing methods for deconvolution to understand bulk tissue heterogeneity, analysis of driver negative cancers, and analysis of ancestry markers with cancer features. |