Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Frohlich, Flavio
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Computational Biology, Neurobiology, Physiology, Systems Biology, Translational Medicine

Our goal is to revolutionize the treatment of psychiatric and neurological illness by developing novel brain stimulation paradigms. We identify and target network dynamics of physiological and pathological brain function. We combine computational modeling, optogenetics, in vitro and in vivo electrophysiology in animal models and humans, control engineering, and clinical trials. We strive to make our laboratory a productive, collaborative, and happy workplace.

Forest, Greg
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Biomaterials, Computational Biology

Research interests include: transport processes in the lung, flow and structure of nano-materials & macromolecular fluids, weakly compressible transport phenomena, solitons and optical fiber applications, inverse problems for material characterization and modeling of transport in multiphase porous media.

Elston, Timothy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Biophysics, Computational Biology, Pharmacology, Systems Biology

The Elston lab is interested in understanding the dynamics of complex biological systems, and developing reliable mathematical models that capture the essential components of these systems. The projects in the lab encompass a wide variety of biological phenomena including signaling through MAPK pathways, noise in gene regulatory networks, airway surface volume regulation, and understanding energy transduction in motor proteins. A major focus of our research is understanding the role of molecular level noise in cellular and molecular processes. We have developed the software tool BioNetS to accurately and efficiently simulate stochastic models of biochemical networks

Chen, Xian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Cancer Biology, Computational Biology, Immunology, Pathology, Systems Biology

Developing and applying novel mass spectrometry (MS)-based proteomics methodologies for high throughput identification, quantification, and characterization of the pathologically relevant changes in protein expression, post-translational modifications (PTMs), and protein-protein interactions. Focuses in the lab include: 1) technology development for comprehensive and quantitative proteomic analysis, 2) investigation of systems regulation in toll-like receptor-mediated pathogenesis and 3) proteomic-based mechanistic investigation of stress-induced cellular responses/effects in cancer pathogenesis.

Carter, Charles
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Computational Biology, Molecular Biology, Structural Biology

Molecular evolution and mechanistic enzymology find powerful synergy in our study of aminoacyl-tRNA synthetases, which translate the genetic code. Class I Tryptophanyl-tRNA Synthetase stores free energy as conformational strain imposed by long-range, interactions on the minimal catalytic domain (MCD) when it binds ATP. We study how this allostery works using X-ray crystallography, bioinformatics, molecular dynamics, enzyme kinetics, and thermodynamics. As coding sequences for class I and II MCDs have significant complementarity, we also pursuing their sense/antisense ancestry. Member of the Molecular & Cellular Biophysics Training Program.

Burch, Christina
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Computational Biology, Evolutionary Biology, Genetics, Genomics, Virology

Experimental Evolution of Viruses. We use both computational and experimental approaches to understand how viruses adapt to their host environment. Our research attempts to determine how genome complexity constrains adaptation, and how virus ecology and genetics interact to determine whether a virus will shift to utilizing new host. In addition, we are trying to develop a framework for predicting which virus genes will contribute to adaptation in particular ecological scenarios such as frequent co-infection of hosts by multiple virus strains. For more information, and for advice on applying to graduate school at UNC, check out my lab website www.unc.edu/~cburch/lab.

Hedrick, Tyson
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Computational Biology, Organismal Biology, Physiology

Research in my laboratory focuses on how animals produce and control movement, with a particular interest in animal flight.  We use both computational and experimental techniques to examine how organismal components such as the neuromuscular and neurosensory systems interact with the external environment via mechanics and aerodynamics to produce movement that is both accurate and robust.  Keywords: biomechanics, flight, avian, insect, neural control, muscle, locomotion, computational modeling.

Jones, Corbin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Computational Biology, Evolutionary Biology, Genetics, Genomics, Organismal Biology

The goal of my research is to identify, clone, and characterize the evolution of genes underlying natural adaptations in order to determine the types of genes involved, how many and what types of genetic changes occurred, and the evolutionary history of these changes. Specific areas of research include: 1) Genetic analyses of adaptations and interspecific differences in Drosophila, 2) Molecular evolution and population genetics of new genes and 3) Evolutionary analysis of QTL and genomic data.

Kuhlman, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology

RESEARCH INTEREST
Biochemistry, Biophysics, Chemical Biology, Computational Biology, Drug Delivery, Molecular Medicine, Quantitative Biology, Structural Biology

We focus on a variety of design goals including the creation of novel protein-protein interactions, protein structures, vaccine antigens and light activatable protein switches. Central to all of our projects is the Rosetta program for protein modeling. In collaboration with developers from a variety of universities, we are continually adding new features to Rosetta as well as testing it on new problems.

Lee, Andrew
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Pharmaceutical Sciences

RESEARCH INTEREST
Biochemistry, Biophysics, Chemical Biology, Computational Biology, Structural Biology

We study protein structure and dynamics as they relate to protein function and energetics. We are currently using NMR spectroscopy (e.g. spin relaxation), computation, and a variety of other biophysical techniques to gain a deeper understanding of proteins at atomic level resolution.  Of specific interest is the general phenomenon of long-range communication within protein structures, such as observed in allostery and conformational change.  A. Lee is a member of the Molecular & Cellular Biophysics Training Program.