Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Slep, Kevin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Cell Biology, Molecular Biology, Neurobiology, Structural Biology

Our lab examines cytoskeletal dynamics, the molecules that regulate it and the biological processes it is involved in using live cell imaging, in vitro reconstitution and x-ray crystallography.  Of particular interest are the microtubule +TIP proteins that dynamically localize to microtubule plus ends, communicate with the actin network, regulate microtubule dynamics, capture kinetochores and engage the cell cortex under polarity-based cues.

Sondek, John
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Cell Signaling, Structural Biology

Our laboratory studies signal transduction systems controlled by heterotrimeric G proteins as well as Ras-related GTPases using a variety of biophysical, biochemical and cellular techniques. Member of the Molecular & Cellular Biophysics Training Program.

Strahl, Brian D.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Genetics, Molecular Biology, Systems Biology

Our laboratory is examining the role of histone post-translational modifications in chromatin structure and function.  Using a combination of molecular biology, genetics and biochemistry, we are determining how a number of modifications to the histone tails (e.g. acetylation, phosphorylation, methylation and ubiquitylation) contribute to the control of gene transcription, DNA repair and replication.

Vaziri, Cyrus
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pathobiology & Translational Science, Toxicology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Molecular Biology, Toxicology

Our broad long-term goal is to understand how mammalian cells maintain ordered control of DNA replication during normal passage through an unperturbed cell cycle, and in response to genotoxins (DNA-damaging agents).  DNA synthesis is a fundamental process for normal growth and development and accurate replication of DNA is crucial for maintenance of genomic stability.  Many cancers display defects in regulation of DNA synthesis and it is important to understand the molecular basis for aberrant DNA replication in tumors.  Moreover, since many chemotherapies specifically target cells in S-phase, a more detailed understanding of DNA replication could allow the rational design of novel cancer therapeutics.  Our lab focuses on three main aspects of DNA replication control:  (1) The S-phase checkpoint, (2) Trans-Lesion Synthesis (TLS) and (3) Re-replication.

Wan, Yisong
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Cell Signaling, Genetics, Immunology, Molecular Biology

We are a molecular genetics laboratory studying immune functions by using mouse models. The focus of our research is to investigate the molecular mechanisms of immune responses under normal and pathological conditions. Our goal is to find therapies for various human immune disorders, such as autoimmunity (type 1 diabetes and multiple sclerosis), tumor and cancer, and inflammatory diseases (inflammatory bowel disease, asthma and arthritis).

Weissman, Bernard E.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pathobiology & Translational Science, Toxicology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Genetics, Molecular Biology

How the loss of different components of the SWI/SNF complex contributes to neoplastic transformation remains an open and important question. My laboratory concentrates on addressing this question by the combined use of biological, biochemical and mouse models for SWI/SNF complex function.

Yeh, Elaine
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Biophysics, Cancer Biology, Cell Biology, Genetics

The site of microtubule attachment to the chromosome is the kinetochore, a complex of over 60 proteins assembled at a specific site on the chromosome, the centromere. Almost every kinetochore protein identified in yeast is conserved through humans and the organization of the kinetochore in yeast may serve as the fundamental unit of attachment. More recently we have become interested in the role of two different classes of ATP binding proteins, cohesions (Smc3, Scc1) and chromatin remodeling factors (Cac1, Hir1, Rdh54) in the structural organization of the kinetochore and their contribution to the fidelity of chromosome segregation.

Yeh, Jen Jen
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pharmacology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Drug Discovery, Genomics, Molecular Biology, Molecular Medicine, Pharmacology, Translational Medicine

We are a translational cancer research lab. The overall goal of our research is to find therapeutic targets and biomarkers for patients with pancreatic cancer and to translate our results to the clinic. In order to accomplish this, we analyze patient tumors using a combination of genomics and proteomics to study the patient tumor and tumor microenvironment, identify and validate targets using forward and reverse genetic approaches in both patient-derived cell lines and mouse models. At the same time, we evaluate novel therapeutics for promising targets in mouse models in order to better predict clinical response in humans.

Zhang, Yanping
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Developmental Biology, Genetics, Molecular Biology

We employ modern technologies – genomics, proteomics, mouse models, multi-color digital imaging, etc. to study cancer mechanisms. We have made major contributions to our understanding of the tumor suppressor ARF and p53 and the oncoprotein Mdm2.

Berg, Jonathan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Genetics, Genomics, Translational Medicine

My research group is broadly interested in the application of sequencing technologies in medical genetics and genomics, using a combination of wet lab and computational approaches.  As a clinician, I am actively involved in the care of patients with hereditary disorders, and the research questions that my group investigates have direct relevance to patient care.  One project uses genome sequencing in families with likely hereditary cancer susceptibility in order to identify novel genes that may be involved in monogenic forms of cancer predisposition.  Another major avenue of investigation examines the use of genome-scale sequencing in clinical medicine, ranging from diagnostic testing to newborn screening, to screening in healthy adults.