Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Erie, Dorothy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Chemistry

RESEARCH INTEREST
Biochemistry, Biophysics, Genetics, Molecular Medicine, Structural Biology

The research in my lab is divided into two main areas – 1) Atomic force microscopy and fluorescence studies of protein-protein and protein-nucleic acid interactions, and 2) Mechanistic studies of transcription elongation. My research spans the biochemical, biophysical, and analytical regimes.

Emanuele, Michael
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Molecular Biology, Systems Biology

Our lab applies cutting edge genetic and proteomic technologies to unravel dynamic signaling networks involved in cell proliferation, genome stability and cancer. These powerful technologies are used to systematically interrogate the ubiquitin proteasome system (UPS), and allow us to gain a systems level understanding of the cell at unparalleled depth. We are focused on UPS signaling in cell cycle progression and genome stability, since these pathways are universally perturbed in cancer.

Duncan, Alex
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Bacteriology, Biochemistry, Cell Signaling, Immunology, Pathogenesis & Infection

My lab studies a recently identified pathogen-sensing signaling complex known as the inflammasome. The inflammasome is responsible for the proteolytic maturation of some cytokines and induces a novel necrotic cell death program. We have found that critical virulence factors from certain pathogens are able to activate NLRP3-mediated signaling, suggesting these pathogens may exploit this host signaling system in order to promote infections.  Our lab has active research projects in several areas relating to inflammasome signaling ranging from understanding basic molecular mechanisms of the pathway to studying the role of the system in animal models of infectious diseases.

Dohlman, Henrik
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Cell Signaling, Genomics, Pharmacology, Systems Biology

We use an integrated approach (genomics, proteomics, computational biology) to study the molecular mechanisms of hormone and drug desensitization. Our current focus is on RGS proteins (regulators of G protein signaling) and post-translational modifications including ubiquitination and phosphorylation.

Cyr, Douglas M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Biochemistry, Cell Biology, Molecular Biology, Molecular Medicine, Neurobiology

The Cyr laboratory studies cellular mechanisms for cystic fibrosis and prion disease. We seek to determine how protein misfolding leads to the lung pathology associated with Cystic Fibrosis and the neurodegeneration associated with prion disease.

Cotter, Peggy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Biochemistry, Genetics, Molecular Biology, Pathogenesis & Infection

Dr. Cotter’s research is aimed at understanding molecular mechanisms of bacterial pathogenesis. Using Bordetella species as models, her group is studying the role of virulence gene regulation in respiratory pathogenesis, how virulence factors activate and suppress inflammation in the respiratory tract, and how proteins of the Two Partner Secretion pathway family are secreted to the bacterial surface and into the extracellular environment. A second major project is focused on Burkholderia pseudomallei, an emerging infectious disease and potential biothreat agent. This research is aimed at understanding the role of autotransporter proteins in the ability of this organism to cause disease via the respiratory route.

Cook, Jeanette (Jean)
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Cell Biology & Physiology, Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Signaling, Genetics, Molecular Biology

The Cook lab studies the major transitions in the cell division cycle and how perturbations in cell cycle control affect genome stability. We have particular interest in mechanisms that control protein abundance and localization at transitions into and out of S phase (DNA replication phase) and into an out of quiescence. We use a variety of molecular biology, cell biology, biochemical, and genetic techniques to manipulate and evaluate human cells as they proliferate or exit the cell cycle. We collaborate with colleagues interested in the interface of cell cycle control with developmental biology, signal transduction, DNA damage responses, and oncogenesis.

Conlon, Frank
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Cardiovascular Biology, Developmental Biology, Genetics, Genomics, Molecular Biology, Stem Cells, Systems Biology

Males and females differ in their prelevance, treatment, and survival to a diverse set of human disease states. This is exemplified cardiovascular disease, a disease that takes more lives than all forms of cancer combined. In cardiac disease, women almost uniformly fare far worse than men: as of 2007 one woman dying for cardiovascular disease in the US every minute. Our lab focuses on sex disparities in development and disease. For these studies, we use a highly integrated approach that incorporates developmental, genetic, proteomic, biochemical and molecular-based studies in mouse and stem cells. Recent advances by our past students (presently at Harvard, John Hopkins and NIH) include studies that define the cellular and molecular events that lead to cardiac septation, those that explore cardiac interaction networks as determinants of transcriptional specificity, the mechanism and function of cardiac transcriptional repression networks, and the regulatory networks of cardiac sexual dimorphism. Our lab has opening for rotation and PhDs to study these rapidly emerging topics.

Carter, Charles
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Computational Biology, Molecular Biology, Structural Biology

Molecular evolution and mechanistic enzymology find powerful synergy in our study of aminoacyl-tRNA synthetases, which translate the genetic code. Class I Tryptophanyl-tRNA Synthetase stores free energy as conformational strain imposed by long-range, interactions on the minimal catalytic domain (MCD) when it binds ATP. We study how this allostery works using X-ray crystallography, bioinformatics, molecular dynamics, enzyme kinetics, and thermodynamics. As coding sequences for class I and II MCDs have significant complementarity, we also pursuing their sense/antisense ancestry. Member of the Molecular & Cellular Biophysics Training Program.

Campbell, Sharon
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Cell Biology & Physiology

RESEARCH INTEREST
Biochemistry, Biophysics, Cell Biology, Cell Signaling, Structural Biology

Current research projects in the Campbell laboratory include structural, biophysical and biochemical studies of wild type and variant Ras and Rho family GTPase proteins, as well as the identification, characterization and structural elucidation of factors that act on these GTPases. Ras and Rho proteins are members of a large superfamily of related guanine nucleotide binding proteins. They are key regulators of signal transduction pathways that control cell growth. Rho GTPases regulate signaling pathways that also modulate cell morphology and actin cytoskeletal organization. Mutated Ras proteins are found in 30% of human cancers and promote uncontrolled cell growth, invasion, and metastasis. Another focus of the lab is in biochemical and biophysical characterization of the cell adhesion proteins, focal adhesion kinase, vinculin, paxillin and palladin. These proteins are involved in actin cytoskeletal rearrangements and cell motility, amongst other functions. Most of our studies are conducted in collaboration with laboratories that focus on molecular and cellular biological aspects of these problems. This allows us to direct cell-based signaling, motility and transformation analyses. Member of the Molecular & Cellular Biophysics Training Program.