Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Liu, Rihe
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Biochemistry, Biophysics, Cell Signaling, Chemical Biology, Nanomedicine

The research interests of the Liu Lab are in functional proteomics and biopharmaceuticals. Currently we are working on the following projects:  (1). Using systems biology approaches to decipher the signaling pathways mediated by disease-related proteases such as caspases and granzymes and by post-translationally modified histones. We address these problems by performing functional protein selections using mRNA-displayed proteome libraries from human, mouse, Drosophila, and C. elegans. (2). Developing novel protein therapeutics and nucleic acid therapeutics that can be used in tumor diagnosis, treatment, and nanomedicine. We use various amplification-based molecular evolution approaches such as mRNA-display and in vivo SELEX to develop novel single domain antibody mimics on the basis of very stable protein domains or to generate aptamers on the basis of nuclease-resistant nucleic acids, that bind to important biomarkers on the surface of cancer cells. We further conjugate these biomarker-binding affinity reagents to small molecule drugs or nanoparticles for targeted delivery of therapeutic agents. (3). Identifying the protein targets of drugs or drug candidates whose action mechanisms are unknown. We combine molecular proteomic and chemical biology approaches to identify the protein targets of drugs whose target-binding affinities are modest.

Liu, Pengda
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Cell Signaling, Drug Discovery

If you are interested in developing new biochemical/molecular techniques/tools to advance our understanding of biology, and if you are interested in signal transduction pathway analyses and identification of cancer biomarkers, our research group may help you to achieve your goals, as we have the same dreams. We are especially interested in deciphering the molecular mechanisms underlying aberrant signaling events that contribute to tumorigenesis, mediated through protein modifications and protein-protein interactions. Understanding these events may lead to identification of novel drug targets and provide new treatment strategies to combat human cancer.

Liu, Jian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Biochemistry, Chemical Biology, Molecular Biology, Structural Biology

The overall goal of our research is to develop an enzyme-based approach to synthesize heparin- and heparan sulfate-like therapeutics.  The lab is currently focusing on improving the anticoagulant efficacy of heparin drug as well as synthesizing heparin-like compounds that inhibit herpes simplex virus infections.  We are also interested in using protein and metabolic engineering approaches for preparing polysaccharides with unique biological functions.

Pearce, Ken`
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences, Toxicology

RESEARCH INTEREST
Biochemistry, Biophysics, Cell Biology, Chemical Biology, Drug Discovery

We are a comprehensive, collaborative group with a primary focus on lead and early drug discovery for oncology and epigenetic targets and pathways. Our research applies reagent production, primary assay development, high-throughput screening, biophysics, and exploratory cell biology to enable small molecule drug discovery programs in solid partnership with collaborators, both within the Center for Integrative Chemical Biology and Drug Discovery and across the UNC campus. We apply small molecule hit discovery to highly validated biochemical targets as well as phenotypic cell-based assays. Our methods include various fluorescence-based readouts and high content microscopy. Examples of some of our collaborative small molecule discovery programs include, inhibition of chromatin methyl-lysine reader proteins, hit discovery for small GTPases such as K-Ras and Gaq, inhibitors of inositol phosphate kinases, inhibitors of protein-protein interactions involving CIB1 and MAGE proteins, and several cell-based efforts including a screen for compounds that enhance c-Myc degradation in pancreatic cancer cells. In addition, we are developing a DNA-encoded library approach for hit discovery to complement traditional high-throughput screening. Our ultimate goal is discovery of new chemical probes and medicines for exploratory biology and unmet medical needs, respectively.

McGinty, Robert
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Pharmaceutical Sciences

RESEARCH INTEREST
Biochemistry, Biophysics, Chemical Biology, Molecular Biology, Structural Biology

The McGinty lab uses structural biology, protein chemistry, biochemistry, and proteomics to study epigenetic signaling through chromatin in health and disease. Chromatin displays an extraordinary diversity of chemical modifications that choreograph gene expression, DNA replication, and DNA repair – misregeulation of which leads to human diseases, especially cancer. We prepare designer chromatin containing specific combinations of histone post-translational modifications. When paired with X-ray crystallography and cryo-electron microscopy, this allows us to interrogate mechanisms underlying epigenetic signaling at atomic resolution.

James, Lindsey Ingerman
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Biochemistry, Chemical Biology, Drug Discovery

We are interested in modulating the activity of chromatin reader proteins with small-molecule ligands, specifically potent and selective chemical probes, in order to open new avenues of research in the field of epigenetics. Our work has pioneered the biochemical assays and medicinal chemistry strategies for high quality probe development for methyl-lysine (Kme) reader proteins, as well as the means by which to evaluate probe selectivity, mechanism of action, and cellular activity. Using a variety of approaches, we utilize such chemical tools to improve our understanding of their molecular targets and the broader biological consequences of modulating these targets in cells. We are also interested in developing novel methods and screening platforms to discover hit compounds to accelerate Kme reader probe discovery, such as affinity-based combinatorial strategies, as well as innovative techniques utilizing our developed antagonists to more fully understand the dynamic nature of chromatin regulation.

Hahn, Klaus
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Neuroscience, Pharmacology

RESEARCH INTEREST
Biochemistry, Biophysics, Cell Biology, Cell Signaling, Chemical Biology, Computational Biology, Systems Biology

Dynamic control of signaling networks in living cells; Rho family and MAPK networks in motility and network plasticity; new tools to study protein activity in living cells (i.e., biosensors, protein photomanipulation, microscopy). Member of the Molecular & Cellular Biophysics Training Program and the Medicinal Chemistry Program.

Gupton, Stephanie
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Cell Signaling, Genetics, Neurobiology, Stem Cells

During cell shape change and motility, a dynamic cytoskeleton produces the force to initiate plasma membrane protrusion, while vesicle trafficking supplies phospholipids and membrane proteins to the expanding plasma membrane. Extracellular cues activate intracellular signaling pathways to elicit specific cell shape changes and motility responses through coordinated cytoskeletal dynamics and vesicle trafficking. In my lab we are investigating the role of two ubiquitin ligases, TRIM9 and TRIM67, in the cell shape changes that occur during neuronal development. We utilize a variety techniques including high resolution live cell microscopy, gene disruption, mouse models, and biochemistry to understand the complex coordination of cytoskeletal dynamics and membrane trafficking driving neuronal shape change and growth cone motility in primary neurons.

Griffith, Jack
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Biochemistry, Biophysics, Molecular Biology, Structural Biology, Virology

We are interested in basic DNA-protein interactions as related to – DNA replication, DNA repair and telomere function.  We utilize a combination of state of the art molecular and biochemical methods together with high resolution electron microscopes.

Graves, Lee M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Biochemistry, Cell Biology, Molecular Biology, Pharmacology, Physiology

Our lab is studying the role of mitogen and stress-activated protein kinases to regulate key aspects of cell metabolism. We are also studying signalling by tyrosine kinases in response to toxicological agents or cell stress.